We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
pip install tensenflow pip install keras
3、安装 Jupyter
开发工具上,试了下 Jupyter,确实很方便,比 Pycharm 更加方便,因为可以运行多个代码片段,比较适合在开发阶段,安装步骤如下:
pip install jupyter python3 -m pip install ipykernel # 同时支持python3 python3 -m ipykernel install --user # 同时支持python3
步骤1: 启动 Jupyter
➜ ~ jupyter notebook
步骤2:在Jupyter上编写代码
点击“New”,新建“Python3”模块,输入代码:
from keras import models from keras import layers from keras.datasets import mnist import numpy as np from keras.utils import to_categorical (train_images, train_labels), (test_images, test_labels) = mnist.load_data() network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28, ))) network.add(layers.Dense(10, activation='softmax')) network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) train_images = train_images.reshape((60000, 28 * 28)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) network.fit(train_images, train_labels, epochs=100, batch_size=128) test_loss, test_acc = network.evaluate(test_images, test_labels) print('test_acc:', test_acc, 'test_loss:', test_loss)
运行结果:
Epoch 1/5 60000/60000 [==============================] - 2s 27us/step - loss: 0.2559 - accuracy: 0.9257 Epoch 2/5 60000/60000 [==============================] - 2s 25us/step - loss: 0.1027 - accuracy: 0.9698 Epoch 3/5 60000/60000 [==============================] - 2s 27us/step - loss: 0.0682 - accuracy: 0.9798 Epoch 4/5 60000/60000 [==============================] - 2s 26us/step - loss: 0.0499 - accuracy: 0.9845 Epoch 5/5 60000/60000 [==============================] - 2s 25us/step - loss: 0.0375 - accuracy: 0.9887 10000/10000 [==============================] - 0s 29us/step test_acc: 0.9789000153541565 test_loss: 0.07354914876233087
上面的代码,就是Keras版本的“Helloworld”。
下面这个是Jupyter的代码:
keras_mnist_test.ipynb.zip
1、numpy报错
FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecat
在运行keras的“helloword”的时候,报上面错误,这个是因为numpy版本问题,解决方法:
pip install numpy==1.16.0
2、测试数据集合的下载问题
在运行加载语句的时候,报错:mnist.load_data()
mnist.load_data()
Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz --------------------------------------------------------------------------- ConnectionRefusedError Traceback (most recent call last) ... Exception: URL fetch failure on https://s3.amazonaws.com/img-datasets/mnist.npz: None -- [Errno 111] Connection refused
解决办法: 通过百度/谷歌,下载数据集,放在指定路径下即可: ~/.keras/datasets, 这个在源码的注释里面也有写到:
~/.keras/datasets
"""MNIST handwritten digits dataset. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from ..utils.data_utils import get_file import numpy as np def load_data(path='mnist.npz'): """Loads the MNIST dataset. # Arguments path: path where to cache the dataset locally (relative to ~/.keras/datasets). # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ path = get_file(path, origin='https://s3.amazonaws.com/img-datasets/mnist.npz', file_hash='8a61469f7ea1b51cbae51d4f78837e45') with np.load(path, allow_pickle=True) as f: x_train, y_train = f['x_train'], f['y_train'] x_test, y_test = f['x_test'], f['y_test'] return (x_train, y_train), (x_test, y_test)
备注:
The text was updated successfully, but these errors were encountered:
No branches or pull requests
一、Keras安装步骤
3、安装 Jupyter
开发工具上,试了下 Jupyter,确实很方便,比 Pycharm 更加方便,因为可以运行多个代码片段,比较适合在开发阶段,安装步骤如下:
二、Hello,World
步骤1: 启动 Jupyter
步骤2:在Jupyter上编写代码
点击“New”,新建“Python3”模块,输入代码:
运行结果:
上面的代码,就是Keras版本的“Helloworld”。
下面这个是Jupyter的代码:
keras_mnist_test.ipynb.zip
三、问题
1、numpy报错
在运行keras的“helloword”的时候,报上面错误,这个是因为numpy版本问题,解决方法:
2、测试数据集合的下载问题
在运行加载语句的时候,报错:
mnist.load_data()
解决办法: 通过百度/谷歌,下载数据集,放在指定路径下即可:
~/.keras/datasets
, 这个在源码的注释里面也有写到:备注:
四、参考
The text was updated successfully, but these errors were encountered: