forked from JalaliLabUCLA/Jalali-Lab-Implementation-of-RAISR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Functions.py
396 lines (365 loc) · 12.7 KB
/
Functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import cv2
from skimage.transform import resize
from scipy.signal import convolve2d
import numpy as np
from math import atan2, floor, pi, ceil, isnan
import numba as nb
import os
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def make_dataset(dir):
images = []
assert os.path.isdir(dir), '%s is not a valid directory' % dir
for root, _, fnames in sorted(os.walk(dir)):
for fname in fnames:
if is_image_file(fname):
path = os.path.join(root, fname)
images.append(path)
return images
# Python opencv library (cv2) cv2.COLOR_BGR2YCrCb has different parameters with MATLAB color convertion.
# In order to have a fair comparison with the benchmark, we wrote these functions by ourselves.
def BGR2YCbCr(im):
mat = np.array([[24.966, 128.553, 65.481],[112, -74.203, -37.797], [-18.214, -93.786, 112]])
mat = mat.T
offset = np.array([[[16, 128, 128]]])
if im.dtype == 'uint8':
mat = mat/255
out = np.dot(im,mat) + offset
out = np.clip(out, 0, 255)
out = np.rint(out).astype('uint8')
elif im.dtype == 'float':
mat = mat/255
offset = offset/255
out = np.dot(im, mat) + offset
out = np.clip(out, 0, 1)
else:
assert False
return out
def YCbCr2BGR(im):
mat = np.array([[24.966, 128.553, 65.481],[112, -74.203, -37.797], [-18.214, -93.786, 112]])
mat = mat.T
mat = np.linalg.inv(mat)
offset = np.array([[[16, 128, 128]]])
if im.dtype == 'uint8':
mat = mat * 255
out = np.dot((im - offset),mat)
out = np.clip(out, 0, 255)
out = np.rint(out).astype('uint8')
elif im.dtype == 'float':
mat = mat * 255
offset = offset/255
out = np.dot((im - offset),mat)
out = np.clip(out, 0, 1)
else:
assert False
return out
def im2double(im):
if im.dtype == 'uint8':
out = im.astype('float') / 255
elif im.dtype == 'uint16':
out = im.astype('float') / 65535
elif im.dtype == 'float':
out = im
else:
assert False
out = np.clip(out, 0, 1)
return out
def Gaussian2d(shape=(3,3),sigma=0.5):
"""
2D gaussian mask - should give the same result as MATLAB's
fspecial('gaussian',[shape],[sigma])
from https://stackoverflow.com/questions/17190649/how-to-obtain-a-gaussian-filter-in-python
"""
m,n = [(ss-1.)/2. for ss in shape]
y,x = np.ogrid[-m:m+1,-n:n+1]
h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) )
h[ h < np.finfo(h.dtype).eps*h.max() ] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
def modcrop(im,modulo):
shape = im.shape
size0 = shape[0] - shape[0] % modulo
size1 = shape[1] - shape[1] % modulo
if len(im.shape) == 2:
out = im[0:size0, 0:size1]
else:
out = im[0:size0, 0:size1, :]
return out
def Prepare(im, patchSize, R):
patchMargin = floor(patchSize/2)
H, W = im.shape
new_height = H / R
new_width = W / R
imL = resize(im, (new_height, new_width), order=3, anti_aliasing=True)
# cv2.imwrite('Compressed.jpg', imL, [int(cv2.IMWRITE_JPEG_QUALITY), 85])
# imL = cv2.imread('Compressed.jpg')
# imL = imL[:,:,0] # Optional: Compress the image
imL = resize(imL, (H, W), order=3, anti_aliasing=True)
imL = im2double(imL)
im_LR = imL
return im_LR
def is_greyimage(im):
x = abs(im[:,:,0]-im[:,:,1])
y = np.linalg.norm(x)
if y==0:
return True
else:
return False
# removed this part of jit arguments(, parallel=True)
@nb.jit(nopython=True)
def Grad(patchX,patchY,weight):
gx = patchX.ravel()
gy = patchY.ravel()
G = np.vstack((gx,gy)).T
x0 = np.dot(G.T,weight)
x = np.dot(x0, G)
w,v = np.linalg.eig(x)
index= w.argsort()[::-1]
w = w[index]
v = v[:,index]
lamda = w[0]
u = (np.sqrt(w[0]) - np.sqrt(w[1]))/(np.sqrt(w[0]) + np.sqrt(w[1]) + 0.00000000000000001)
return lamda,u
# removed this part of jit arguments(, parallel=True)
@nb.jit(nopython=True)
def HashTable(patchX,patchY,weight, Qangle,Qstrength,Qcoherence,stre,cohe):
assert (len(stre)== Qstrength-1) and (len(cohe)==Qcoherence-1),"Quantization number should be equal"
gx = patchX.ravel()
gy = patchY.ravel()
G = np.vstack((gx,gy)).T
x0 = np.dot(G.T,weight)
x = np.dot(x0, G)
w,v = np.linalg.eig(x)
index= w.argsort()[::-1]
w = w[index]
v = v[:,index]
theta = atan2(v[1,0], v[0,0])
if theta<0:
theta = theta+pi
theta = floor(theta/(pi/Qangle))
lamda = w[0]
u = (np.sqrt(w[0]) - np.sqrt(w[1]))/(np.sqrt(w[0]) + np.sqrt(w[1]) + 0.00000000000000001)
if isnan(u):
u=1
if theta>Qangle-1:
theta = Qangle-1
if theta<0:
theta = 0
lamda = np.searchsorted(stre,lamda)
u = np.searchsorted(cohe,u)
return theta,lamda,u
# removed this part of jit arguments(, parallel=True)
@nb.jit(nopython=True)
def Gaussian_Mul(x,y,wGaussian):
result = np.zeros((x.shape[0], x.shape[1], y.shape[2]))
for i in range(x.shape[0]):
# inter = np.matmul(x[i], wGaussian)
# result[i] = np.matmul(inter,y[i])
inter = np.dot(x[i], wGaussian)
result[i] = np.dot(inter, y[i])
return result
def CT_descriptor(im):
H, W = im.shape
windowSize = 3
Census = np.zeros((H, W))
CT = np.zeros((H, W, windowSize, windowSize))
C = np.int((windowSize-1)/2)
for i in range(C,H-C):
for j in range(C, W-C):
cen = 0
for a in range(-C, C+1):
for b in range(-C, C+1):
if not (a==0 and b==0):
if im[i+a, j+b] < im[i, j]:
cen += 1
CT[i, j, a+C,b+C] = 1
Census[i, j] = cen
Census = Census/8
return Census, CT
def Blending1(LR, HR):
H,W = LR.shape
H1,W1 = HR.shape
assert H1==H and W1==W
Census,CT = CT_descriptor(LR)
blending1 = Census*HR + (1 - Census)*LR
return blending1
def Blending2(LR, HR):
H,W = LR.shape
H1,W1 = HR.shape
assert H1==H and W1==W
Census1, CT1 = CT_descriptor(LR)
Census2, CT2 = CT_descriptor(HR)
weight = np.zeros((H, W))
x = np.zeros(( 3, 3))
for i in range(H):
for j in range(W):
x = np.absolute(CT1[i,j]-CT2[i,j])
weight[i, j] = x.sum()
weight = weight/weight.max()
blending2 = weight * LR + (1 - weight) * HR
return blending2
def Backprojection(LR, HR, maxIter):
H, W = LR.shape
H1, W1 = HR.shape
w = Gaussian2d((5,5), 10)
w = w**2
w = w/sum(np.ravel(w))
for i in range(maxIter):
im_L = resize(HR, (H, W), order=3, mode='reflect', anti_aliasing=True)
imd = LR - im_L
im_d = resize(imd, (H1, W1), order=3, mode='reflect', anti_aliasing=True)
HR = HR + convolve2d(im_d, w, 'same')
return HR
def createFolder(directory):
try:
if not os.path.exists(directory):
os.makedirs(directory)
except OSError:
print ('Error: Creating directory. ' + directory)
def Dog1(im):
sigma = 0.85
alpha = 1.414
r = 15
ksize = (3, 3)
G1 = cv2.GaussianBlur(im, ksize, sigma)
Ga1 = cv2.GaussianBlur(im, ksize, sigma*alpha)
D1 = cv2.addWeighted(G1, 1+r, Ga1, -r, 0)
G2 = cv2.GaussianBlur(Ga1, ksize, sigma)
Ga2 = cv2.GaussianBlur(Ga1, ksize, sigma*alpha)
D2 = cv2.addWeighted(G2, 1+r, Ga2, -r, 0)
G3 = cv2.GaussianBlur(Ga2, ksize, sigma)
Ga3 = cv2.GaussianBlur(Ga2, ksize, sigma * alpha)
D3 = cv2.addWeighted(G3, 1+r, Ga3, -r, 0)
B1 = Blending1(im, D3)
B1 = Blending1(im, B1)
B2 = Blending1(B1, D2)
B2 = Blending1(im, B2)
B3 = Blending1(B2, D1)
B3 = Blending1(im, B3)
output = B3
return output
def Getfromsymmetry1(V, patchSize, t1, t2):
V_sym = np.zeros((patchSize*patchSize,patchSize*patchSize))
for i in range(1, patchSize*patchSize+1):
for j in range(1, patchSize*patchSize+1):
y1 = ceil(i/patchSize)
x1 = i-(y1-1)*patchSize
y2 = ceil(j/patchSize)
x2 = j-(y2-1)*patchSize
if (t1 == 1) and (t2 == 0):
ig = patchSize * x1 + 1 - y1
jg = patchSize * x2 + 1 - y2
V_sym[ig - 1, jg - 1] = V[i - 1, j - 1]
elif (t1 == 2) and (t2 == 0):
x = patchSize + 1 - x1
y = patchSize + 1 - y1
ig = (y - 1) * patchSize + x
x = patchSize + 1 - x2
y = patchSize + 1 - y2
jg = (y - 1) * patchSize + x
V_sym[ig - 1, jg - 1] = V[i - 1, j - 1]
elif (t1 == 3) and (t2 == 0):
x = y1
y = patchSize + 1 - x1
ig =(y - 1) * patchSize + x
x = y2
y = patchSize + 1 - x2
jg = (y - 1) * patchSize + x
V_sym[ig - 1, jg - 1] = V[i - 1, j - 1]
elif (t1 == 0) and (t2 == 1):
x = patchSize + 1 - x1
y = y1
ig =(y - 1) * patchSize + x
x = patchSize + 1 - x2
y = y2
jg = (y - 1) * patchSize + x
V_sym[ig - 1, jg - 1] = V[i - 1, j - 1]
elif (t1 == 1) and (t2 == 1):
x0 = patchSize + 1 - x1
y0 = y1
x = patchSize + 1 - y0
y = x0
ig =(y - 1) * patchSize + x
x0 = patchSize + 1 - x2
y0 = y2
x = patchSize + 1 - y0
y = x0
jg = (y - 1) * patchSize + x
V_sym[ig - 1, jg - 1] = V[i - 1, j - 1]
elif (t1 == 2) and (t2 == 1):
x0 = patchSize + 1 - x1
y0 = y1
x = patchSize + 1 - x0
y = patchSize + 1 - y0
ig =(y - 1) * patchSize + x
x0 = patchSize + 1 - x2
y0 = y2
x = patchSize + 1 - x0
y = patchSize + 1 - y0
jg = (y - 1) * patchSize + x
V_sym[ig - 1, jg - 1] = V[i - 1, j - 1]
elif (t1 == 3) and (t2 == 1):
x0 = patchSize + 1 - x1
y0 = y1
x = y0
y = patchSize + 1 - x0
ig =(y - 1) * patchSize + x
x0 = patchSize + 1 - x2
y0 = y2
x = y0
y = patchSize + 1 - x0
jg = (y - 1) * patchSize + x
V_sym[ig - 1, jg - 1] = V[i - 1, j - 1]
else:
assert False
return V_sym
def Getfromsymmetry2(V, patchSize, t1, t2):
Vp = np.reshape(V, (patchSize, patchSize))
V1 = np.rot90(Vp, t1)
if t2 == 1:
V1 = np.flip(V1, 1)
V_sym = np.ravel(V1)
return V_sym
# Quantization procedure to get the optimized strength and coherence boundaries
@nb.jit(nopython=True)
def QuantizationProcess (im_GX, im_GY,patchSize, patchNumber,w , quantization):
H, W = im_GX.shape
for i1 in range(H-2*floor(patchSize/2)):
for j1 in range(W-2*floor(patchSize/2)):
idx = (slice(i1,(i1+2*floor(patchSize/2)+1)),slice(j1,(j1+2*floor(patchSize/2)+1)))
patchX = im_GX[idx]
patchY = im_GY[idx]
strength, coherence = Grad(patchX, patchY, w)
quantization[patchNumber, 0] = strength
quantization[patchNumber, 1] = coherence
patchNumber += 1
return quantization, patchNumber
# removed this part of jit arguments(, parallel=True)
# Training procedure for each image (use numba.jit to speed up)
@nb.jit(nopython=True)
def TrainProcess (im_LR, im_HR, im_GX, im_GY,patchSize, w, Qangle, Qstrength,Qcoherence, stre, cohe, R, Q, V, mark):
H, W = im_HR.shape
for i1 in range(H-2*floor(patchSize/2)):
for j1 in range(W-2*floor(patchSize/2)):
idx1 = (slice(i1,(i1+2*floor(patchSize/2)+1)),slice(j1,(j1+2*floor(patchSize/2)+1)))
patch = im_LR[idx1]
patchX = im_GX[idx1]
patchY = im_GY[idx1]
theta,lamda,u=HashTable(patchX, patchY, w, Qangle, Qstrength,Qcoherence, stre, cohe)
patch1 = patch.ravel()
patchL = patch1.reshape((1,patch1.size))
t = (i1 % R) * R +(j1 % R)
j = theta * Qstrength * Qcoherence + lamda * Qcoherence + u
tx = np.int(t)
jx = np.int(j)
A = np.dot(patchL.T, patchL)
Q[tx,jx] += A
b1=patchL.T * im_HR[i1+floor(patchSize/2),j1+floor(patchSize/2)]
b = b1.reshape((b1.size))
V[tx,jx] += b
mark[tx,jx] = mark[tx,jx]+1
return Q,V,mark