-
Notifications
You must be signed in to change notification settings - Fork 0
/
m4L_distributed_virtual_fed_avg_iiot.py
381 lines (292 loc) · 13.1 KB
/
m4L_distributed_virtual_fed_avg_iiot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 14 15:13:21 2020
@author: 1804499
"""
import syft as sy
import numpy as np
import time
import memory_profiler
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
hook = sy.TorchHook(torch)
#Create couple of workers
bob = sy.VirtualWorker(hook, id="bob")
alice = sy.VirtualWorker(hook, id='alice')
jake = sy.VirtualWorker(hook, id="jake")
jane = sy.VirtualWorker(hook, id='jane')
secure_worker = sy.VirtualWorker(hook, id="secure_worker")
def data():
alldata = np.loadtxt("wustl-train-test.csv", delimiter = ",")
j = len(alldata[0])
data = alldata[:, 0:j-1]
benlabel = alldata[:, j-1]
bendata = (data - data.min()) / (data.max() - data.min())
bendata, benmir, benlabel, benslabel = train_test_split(bendata, benlabel, test_size = 0.2, random_state = 42)
return bendata, benmir, benlabel, benslabel
traind, testd, trainlbl, testlbl = data()
traind = torch.FloatTensor(traind)
testd = torch.FloatTensor(testd)
trainlbl = torch.FloatTensor(trainlbl)
n = len(traind)
part1 = int(0.25*n)
part2 = int(0.50*n)
part3 = int(0.75*n)
#testlbl = torch.FloatTensor(testlbl)
torch.manual_seed(0)
# Define network dimensions
n_input_dim = traind.shape[1]
# Layer size
n_hidden1 = 26
n_hidden2 = 128 # Number of hidden nodes
n_output = 1 # Number of output nodes = for binary classifier
#Build and initialize network (model)
model = nn.Sequential(
nn.Linear(n_input_dim, n_hidden1),
nn.ReLU(),
nn.Linear(n_hidden1, n_hidden2),
nn.Linear(n_hidden2, n_hidden2),
nn.Linear(n_hidden2, n_hidden1),
nn.Linear(n_hidden1, n_output),
nn.Sigmoid())
# Define the loss function
#loss_fn = torch.nn.BCELoss()
learning_rate = 0.001
eps = 0.001
epochs = 4
worker_iter = 30
batch_size = 128
m_batch_size = 4
cross_entropy = nn.BCELoss()
# Cross Entropy Cost Function
#def cross_entropy(input, target, eps):
# input = torch.clamp(input,min=1e-7,max=1-1e-7)
# bce = - (target * torch.log(input + eps) + (1 - target + eps) * torch.log(1 - input))
# return torch.mean(bce)
# Regularized Cost
#def cross_reg(input, target, eps, lambd):
# rloss = cross_entropy(input, target, eps)
# rloss = rloss * lambd
# return rloss
#Full Training
def train_base(traind, trainlbl, model, epochs, worker_iter, learning_rate, batch_size):
#Create data for Bob and Alice
#size = int(len(traind) / 2)
bobs_data = traind[0:part1]
bobs_target = trainlbl[0:part1]
alices_data = traind[part1:part2]
alices_target = trainlbl[part1:part2]
jakes_data = traind[part2:part3]
jakes_target = trainlbl[part2:part3]
janes_data = traind[part3:]
janes_target = trainlbl[part3:]
#batch_number = bobs_data.size()[0] // batch_size
for i in range(epochs):
# X is a torch Variable
#indices = epochs % batch_number
permutation = torch.randperm(bobs_data.size()[0])
indices = permutation[i:i+batch_size]
bobs_data_batch, bobs_target_batch = bobs_data[indices].send(bob), bobs_target[indices].send(bob)
alices_data_batch, alices_target_batch = alices_data[indices].send(alice), alices_target[indices].send(alice)
jakes_data_batch, jakes_target_batch = jakes_data[indices].send(jake), jakes_target[indices].send(jake)
janes_data_batch, janes_target_batch = janes_data[indices].send(jane), janes_target[indices].send(jane)
#Send model to workers
bobs_model = model.copy().send(bob)
alices_model = model.copy().send(alice)
jakes_model = model.copy().send(jake)
janes_model = model.copy().send(jane)
boptim = torch.optim.SGD(bobs_model.parameters(), lr=learning_rate)
aoptim = torch.optim.SGD(alices_model.parameters(), lr=learning_rate)
jkoptim = torch.optim.SGD(jakes_model.parameters(), lr=learning_rate)
jnoptim = torch.optim.SGD(janes_model.parameters(), lr=learning_rate)
# Training virtual workers script
for i in range(worker_iter):
#Bobs Training
boptim.zero_grad()
b_yhat = bobs_model(bobs_data_batch)
bloss = cross_entropy(b_yhat.reshape(-1), bobs_target_batch)
bloss.backward()
boptim.step()
bloss = bloss.get().data
#Alices Training
aoptim.zero_grad()
a_yhat = alices_model(alices_data_batch)
aloss = cross_entropy(a_yhat.reshape(-1), alices_target_batch)
aloss.backward()
aoptim.step()
aloss = aloss.get().data
#Jakes Training
jkoptim.zero_grad()
jk_yhat = jakes_model(jakes_data_batch)
jkloss = cross_entropy(jk_yhat.reshape(-1), jakes_target_batch)
jkloss.backward()
jkoptim.step()
jkloss = jkloss.get().data
#Janes Training
jnoptim.zero_grad()
jn_yhat = janes_model(janes_data_batch)
jnloss = cross_entropy(jn_yhat.reshape(-1), janes_target_batch)
jnloss.backward()
jnoptim.step()
jnloss = jnloss.get().data
#Send Both Updated Models to a Secure Worker
alices_model.move(secure_worker)
bobs_model.move(secure_worker)
jakes_model.move(secure_worker)
janes_model.move(secure_worker)
#james_model.move(secure_worker)
#obtaining model weights and averaging them
paramb = []
for param in bobs_model.parameters():
paramb.append(param.view(-1))
paramb = torch.cat(paramb)
parama = []
for param in alices_model.parameters():
parama.append(param.view(-1))
parama = torch.cat(parama)
paramjk = []
for param in jakes_model.parameters():
paramjk.append(param.view(-1))
paramjk = torch.cat(paramjk)
paramjn = []
for param in janes_model.parameters():
paramjn.append(param.view(-1))
paramjn = torch.cat(paramjn)
#Averaging model weights
(parama + paramb + paramjk + paramjn) / 4
return bloss, aloss, jkloss, jnloss, model
def train_efficient(traind, trainlbl, model, epochs, worker_iter, learning_rate, batch_size, m_batch_size):
#Create data for Bob and Alice
#size = int(len(traind) / 2)
#W_c = 0.01
#W_t = 0.01
lambd = 0.01
#lambi = 0.01
bobs_data = traind[0:part1]
bobs_target = trainlbl[0:part1]
alices_data = traind[part1:part2]
alices_target = trainlbl[part1:part2]
jakes_data = traind[part2:part3]
jakes_target = trainlbl[part2:part3]
janes_data = traind[part3:]
janes_target = trainlbl[part3:]
for i in range(epochs):
permutation = torch.randperm(bobs_data.size()[0])
indices = permutation[i:i+batch_size]
# Mini-Batch
bobs_data_batch, bobs_target_batch = bobs_data[indices].send(bob), bobs_target[indices].send(bob)
alices_data_batch, alices_target_batch = alices_data[indices].send(alice), alices_target[indices].send(alice)
jakes_data_batch, jakes_target_batch = jakes_data[indices].send(jake), jakes_target[indices].send(jake)
janes_data_batch, janes_target_batch = janes_data[indices].send(jane), janes_target[indices].send(jane)
# Micro-Batch
mindices = indices / m_batch_size
bobs_data_batch, bobs_target_batch = bobs_data[mindices].send(bob), bobs_target[mindices].send(bob)
alices_data_batch, alices_target_batch = alices_data[mindices].send(alice), alices_target[mindices].send(alice)
jakes_data_batch, jakes_target_batch = jakes_data[mindices].send(jake), jakes_target[mindices].send(jake)
janes_data_batch, janes_target_batch = janes_data[mindices].send(jane), janes_target[mindices].send(jane)
#Send model to workers
bobs_model = model.copy().send(bob)
alices_model = model.copy().send(alice)
jakes_model = model.copy().send(jake)
janes_model = model.copy().send(jane)
boptim = torch.optim.SGD(bobs_model.parameters(), lr=learning_rate, weight_decay=lambd)
aoptim = torch.optim.SGD(alices_model.parameters(), lr=learning_rate, weight_decay=lambd)
jkoptim = torch.optim.SGD(jakes_model.parameters(), lr=learning_rate, weight_decay=lambd)
jnoptim = torch.optim.SGD(janes_model.parameters(), lr=learning_rate, weight_decay=lambd)
# Training virtual workers script
for i in range(worker_iter):
#Bobs Training
for param in bobs_model.parameters():
param.grad = None#
b_yhat = bobs_model(bobs_data_batch)
bloss = cross_entropy(b_yhat.reshape(-1), bobs_target_batch)
bloss.backward()
boptim.step()
bloss = bloss.get().data
#Alices Training
for param in alices_model.parameters():
param.grad = None#
a_yhat = alices_model(alices_data_batch)
aloss = cross_entropy(a_yhat.reshape(-1), alices_target_batch)
aloss.backward()
aoptim.step()
aloss = aloss.get().data
#Jakes Training
for param in jakes_model.parameters():
param.grad = None#
jk_yhat = jakes_model(jakes_data_batch)
jkloss = cross_entropy(jk_yhat.reshape(-1), jakes_target_batch)
jkloss.backward()
jkoptim.step()
jkloss = jkloss.get().data
#Janes Training
for param in janes_model.parameters():
param.grad = None#
jn_yhat = janes_model(janes_data_batch)
jnloss = cross_entropy(jn_yhat.reshape(-1), janes_target_batch)
jnloss.backward()
jnoptim.step()
jnloss = jnloss.get().data
#if bloss <= bl:
# lambd = lambd + lambi
#if aloss <= al:
# lambd = lambd + lambi
#if jkloss <= jkl:
# lambd = lambd + lambi
#if jnloss <= jnl:
# lambd = lambd + lambi
#Send Both Updated Models to a Secure Worker
alices_model.move(secure_worker)
bobs_model.move(secure_worker)
jakes_model.move(secure_worker)
janes_model.move(secure_worker)
#obtaining model weights and averaging them
paramob = []
for param in bobs_model.parameters():
paramob.append(param.view(-1))
paramob = torch.cat(paramob)
paramoa = []
for param in alices_model.parameters():
paramoa.append(param.view(-1))
paramoa = torch.cat(paramoa)
paramojk = []
for param in jakes_model.parameters():
paramojk.append(param.view(-1))
paramojk = torch.cat(paramojk)
paramojn = []
for param in janes_model.parameters():
paramojn.append(param.view(-1))
paramojn = torch.cat(paramojn)
#Averaging model weights
(paramoa + paramob + paramojk + paramojn) / 4
return bloss, aloss, jkloss, jnloss, model
#Baseline Computational Resources
starttbase = time.time()
startmbase = memory_profiler.memory_usage()
bl, al, jkl, jnl,modelb = train_base(traind, trainlbl, model, epochs, worker_iter, learning_rate, batch_size)
endtbase =time.time()
endmbase = memory_profiler.memory_usage()
traintime_base = endtbase - starttbase
train_memory_base = endmbase[0] - startmbase[0]
print("Training time base: {:2f} sec".format(traintime_base))
print("Training memory base: {:2f} mb".format(train_memory_base))
#Optimized Computational Resources
starttefi = time.time()
startmefi = memory_profiler.memory_usage()
obl, oal, ojkl, ojnl, modelo = train_efficient(traind, trainlbl, model, epochs, worker_iter, learning_rate, batch_size, m_batch_size)
endtefi = time.time()
endmefi = memory_profiler.memory_usage()
traintime_efi = endtefi - starttefi
train_memory_efi = endmefi[0] - startmefi[0]
print("Training time optimize: {:2f} sec".format(traintime_efi))
print("Training memory optimize: {:2f} mb".format(train_memory_efi))
def predict(model, X, Y):
y_hat = model(X)
y_hat_class = np.where(y_hat.detach().numpy()<0.5, 0, 1)
accuracy = np.sum(Y.reshape(-1,1) ==y_hat_class) / len(Y)
return accuracy
acc_b = predict(modelb, testd, testlbl)
acc_o = predict(modelo, testd, testlbl)
print("Test accuracy base: {:2f}".format(acc_b))
print("Test accuracy optimize: {:2f}".format(acc_o))