Skip to content

Commit

Permalink
feat: add clip-cfg to ActionTermCfg && add clip to all mdp/actions
Browse files Browse the repository at this point in the history
  • Loading branch information
fan-ziqi committed Dec 7, 2024
1 parent 1238d7a commit bab210d
Show file tree
Hide file tree
Showing 8 changed files with 76 additions and 5 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,6 @@ class JointActionCfg(ActionTermCfg):
"""Scale factor for the action (float or dict of regex expressions). Defaults to 1.0."""
offset: float | dict[str, float] = 0.0
"""Offset factor for the action (float or dict of regex expressions). Defaults to 0.0."""
clip: dict[str, tuple] | None = None
"""Clip range for the action (dict of regex expressions). Defaults to None."""
preserve_order: bool = False
"""Whether to preserve the order of the joint names in the action output. Defaults to False."""

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,9 +40,10 @@ class BinaryJointAction(ActionTerm):

cfg: actions_cfg.BinaryJointActionCfg
"""The configuration of the action term."""

_asset: Articulation
"""The articulation asset on which the action term is applied."""
_clip: dict[str, tuple] | None = None
"""The clip applied to the input action."""

def __init__(self, cfg: actions_cfg.BinaryJointActionCfg, env: ManagerBasedEnv) -> None:
# initialize the action term
Expand Down Expand Up @@ -83,6 +84,13 @@ def __init__(self, cfg: actions_cfg.BinaryJointActionCfg, env: ManagerBasedEnv)
)
self._close_command[index_list] = torch.tensor(value_list, device=self.device)

# parse clip
if cfg.clip is not None:
if isinstance(cfg.clip, dict):
self._clip = cfg.clip
else:
raise ValueError(f"Unsupported clip type: {type(cfg.clip)}. Supported types are dict.")

"""
Properties.
"""
Expand Down Expand Up @@ -115,6 +123,13 @@ def process_actions(self, actions: torch.Tensor):
binary_mask = actions < 0
# compute the command
self._processed_actions = torch.where(binary_mask, self._close_command, self._open_command)
# clip actions
if self._clip is not None:
# resolve the dictionary config
index_list, _, value_list = string_utils.resolve_matching_names_values(self._clip, self._joint_names)
for index in range(len(index_list)):
min_value, max_value = value_list[index]
self._processed_actions[:, index_list[index]].clip_(min_value, max_value)

def reset(self, env_ids: Sequence[int] | None = None) -> None:
self._raw_actions[env_ids] = 0.0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ def __init__(self, cfg: actions_cfg.JointActionCfg, env: ManagerBasedEnv) -> Non
if isinstance(cfg.clip, dict):
self._clip = cfg.clip
else:
raise ValueError(f"Unsupported clip type: {type(cfg.scale)}. Supported types are dict.")
raise ValueError(f"Unsupported clip type: {type(cfg.clip)}. Supported types are dict.")

"""
Properties.
Expand Down Expand Up @@ -134,6 +134,7 @@ def process_actions(self, actions: torch.Tensor):
index_list, _, value_list = string_utils.resolve_matching_names_values(self._clip, self._joint_names)
for index in range(len(index_list)):
min_value, max_value = value_list[index]
print(value_list[index])
self._processed_actions[:, index_list[index]].clip_(min_value, max_value)

def reset(self, env_ids: Sequence[int] | None = None) -> None:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,8 @@ class JointPositionToLimitsAction(ActionTerm):
"""The articulation asset on which the action term is applied."""
_scale: torch.Tensor | float
"""The scaling factor applied to the input action."""
_clip: dict[str, tuple] | None = None
"""The clip applied to the input action."""

def __init__(self, cfg: actions_cfg.JointPositionToLimitsActionCfg, env: ManagerBasedEnv):
# initialize the action term
Expand Down Expand Up @@ -76,6 +78,12 @@ def __init__(self, cfg: actions_cfg.JointPositionToLimitsActionCfg, env: Manager
self._scale[:, index_list] = torch.tensor(value_list, device=self.device)
else:
raise ValueError(f"Unsupported scale type: {type(cfg.scale)}. Supported types are float and dict.")
# parse clip
if cfg.clip is not None:
if isinstance(cfg.clip, dict):
self._clip = cfg.clip
else:
raise ValueError(f"Unsupported clip type: {type(cfg.clip)}. Supported types are dict.")

"""
Properties.
Expand All @@ -102,6 +110,13 @@ def process_actions(self, actions: torch.Tensor):
self._raw_actions[:] = actions
# apply affine transformations
self._processed_actions = self._raw_actions * self._scale
# clip actions
if self._clip is not None:
# resolve the dictionary config
index_list, _, value_list = string_utils.resolve_matching_names_values(self._clip, self._joint_names)
for index in range(len(index_list)):
min_value, max_value = value_list[index]
self._processed_actions[:, index_list[index]].clip_(min_value, max_value)
# rescale the position targets if configured
# this is useful when the input actions are in the range [-1, 1]
if self.cfg.rescale_to_limits:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@

import omni.log

import omni.isaac.lab.utils.string as string_utils
from omni.isaac.lab.assets.articulation import Articulation
from omni.isaac.lab.managers.action_manager import ActionTerm
from omni.isaac.lab.utils.math import euler_xyz_from_quat
Expand Down Expand Up @@ -59,6 +60,8 @@ class NonHolonomicAction(ActionTerm):
"""The scaling factor applied to the input action. Shape is (1, 2)."""
_offset: torch.Tensor
"""The offset applied to the input action. Shape is (1, 2)."""
_clip: dict[str, tuple] | None = None
"""The clip applied to the input action."""

def __init__(self, cfg: actions_cfg.NonHolonomicActionCfg, env: ManagerBasedEnv):
# initialize the action term
Expand Down Expand Up @@ -104,6 +107,12 @@ def __init__(self, cfg: actions_cfg.NonHolonomicActionCfg, env: ManagerBasedEnv)
# save the scale and offset as tensors
self._scale = torch.tensor(self.cfg.scale, device=self.device).unsqueeze(0)
self._offset = torch.tensor(self.cfg.offset, device=self.device).unsqueeze(0)
# parse clip
if cfg.clip is not None:
if isinstance(cfg.clip, dict):
self._clip = cfg.clip
else:
raise ValueError(f"Unsupported clip type: {type(cfg.clip)}. Supported types are dict.")

"""
Properties.
Expand All @@ -129,6 +138,13 @@ def process_actions(self, actions):
# store the raw actions
self._raw_actions[:] = actions
self._processed_actions = self.raw_actions * self._scale + self._offset
# clip actions
if self._clip is not None:
# resolve the dictionary config
index_list, _, value_list = string_utils.resolve_matching_names_values(self._clip, self._joint_names)
for index in range(len(index_list)):
min_value, max_value = value_list[index]
self._processed_actions[:, index_list[index]].clip_(min_value, max_value)

def apply_actions(self):
# obtain current heading
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
import omni.log

import omni.isaac.lab.utils.math as math_utils
import omni.isaac.lab.utils.string as string_utils
from omni.isaac.lab.assets.articulation import Articulation
from omni.isaac.lab.controllers.differential_ik import DifferentialIKController
from omni.isaac.lab.managers.action_manager import ActionTerm
Expand Down Expand Up @@ -42,6 +43,8 @@ class DifferentialInverseKinematicsAction(ActionTerm):
"""The articulation asset on which the action term is applied."""
_scale: torch.Tensor
"""The scaling factor applied to the input action. Shape is (1, action_dim)."""
_clip: dict[str, tuple] | None = None
"""The clip applied to the input action."""

def __init__(self, cfg: actions_cfg.DifferentialInverseKinematicsActionCfg, env: ManagerBasedEnv):
# initialize the action term
Expand Down Expand Up @@ -101,6 +104,13 @@ def __init__(self, cfg: actions_cfg.DifferentialInverseKinematicsActionCfg, env:
else:
self._offset_pos, self._offset_rot = None, None

# parse clip
if cfg.clip is not None:
if isinstance(cfg.clip, dict):
self._clip = cfg.clip
else:
raise ValueError(f"Unsupported clip type: {type(cfg.clip)}. Supported types are dict.")

"""
Properties.
"""
Expand All @@ -125,6 +135,13 @@ def process_actions(self, actions: torch.Tensor):
# store the raw actions
self._raw_actions[:] = actions
self._processed_actions[:] = self.raw_actions * self._scale
# clip actions
if self._clip is not None:
# resolve the dictionary config
index_list, _, value_list = string_utils.resolve_matching_names_values(self._clip, self._joint_names)
for index in range(len(index_list)):
min_value, max_value = value_list[index]
self._processed_actions[:, index_list[index]].clip_(min_value, max_value)
# obtain quantities from simulation
ee_pos_curr, ee_quat_curr = self._compute_frame_pose()
# set command into controller
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,9 @@ class for more details.
debug_vis: bool = False
"""Whether to visualize debug information. Defaults to False."""

clip: dict[str, tuple] | None = None
"""Clip range for the action (dict of regex expressions). Defaults to None."""


##
# Command manager.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,13 @@ class CommandsCfg:
class ActionsCfg:
"""Action specifications for the MDP."""

joint_pos = mdp.JointPositionActionCfg(asset_name="robot", joint_names=[".*"], scale=0.5, use_default_offset=True)
joint_pos = mdp.JointPositionActionCfg(
asset_name="robot",
joint_names=[".*"],
scale=0.5,
use_default_offset=True,
clip={".*": (-100.0, 100.0)}, # only for test
)


@configclass
Expand Down

0 comments on commit bab210d

Please sign in to comment.