From 4a773d91297c193832f8b58cda663c577fe6cfc4 Mon Sep 17 00:00:00 2001 From: Pascal Roth <57946385+pascal-roth@users.noreply.github.com> Date: Wed, 9 Oct 2024 11:30:09 +0200 Subject: [PATCH] Fixes the event for randomizing rigid body material (#1140) # Description The current friction randomization event only selects a single random number in the given range and does not vary them. With the given PR, this is getting fixed, and there is a sampling of the entire given range. ## Type of change - Bug fix (non-breaking change which fixes an issue) ## Screenshots | Before | After | | ------ | ----- | | ![Screenshot from 2024-10-03 22-26-49](https://github.com/user-attachments/assets/d13f86ee-c776-4046-af2e-46be8f271a00) | ![Screenshot from 2024-10-03 22-27-15](https://github.com/user-attachments/assets/cf0a536d-20d0-47f1-b580-25241049cdd4) | ## Checklist - [x] I have run the [`pre-commit` checks](https://pre-commit.com/) with `./isaaclab.sh --format` - [x] I have made corresponding changes to the documentation - [x] My changes generate no new warnings - [ ] I have added tests that prove my fix is effective or that my feature works - [x] I have updated the changelog and the corresponding version in the extension's `config/extension.toml` file - [x] I have added my name to the `CONTRIBUTORS.md` or my name already exists there --------- Co-authored-by: Mayank Mittal --- .../omni.isaac.lab/config/extension.toml | 2 +- .../omni.isaac.lab/docs/CHANGELOG.rst | 10 ++ .../omni/isaac/lab/envs/mdp/events.py | 159 +++++++++++------- 3 files changed, 109 insertions(+), 62 deletions(-) diff --git a/source/extensions/omni.isaac.lab/config/extension.toml b/source/extensions/omni.isaac.lab/config/extension.toml index 473b7a0986..b8b9a8c0ef 100644 --- a/source/extensions/omni.isaac.lab/config/extension.toml +++ b/source/extensions/omni.isaac.lab/config/extension.toml @@ -1,7 +1,7 @@ [package] # Note: Semantic Versioning is used: https://semver.org/ -version = "0.24.19" +version = "0.24.20" # Description title = "Isaac Lab framework for Robot Learning" diff --git a/source/extensions/omni.isaac.lab/docs/CHANGELOG.rst b/source/extensions/omni.isaac.lab/docs/CHANGELOG.rst index 2e67c3708c..9437a7aaf2 100644 --- a/source/extensions/omni.isaac.lab/docs/CHANGELOG.rst +++ b/source/extensions/omni.isaac.lab/docs/CHANGELOG.rst @@ -1,6 +1,16 @@ Changelog --------- +0.24.20 (2024-10-07) +~~~~~~~~~~~~~~~~~~~~ + +Fixes +^^^^^ + +* Fixed the :meth:`omni.isaac.lab.envs.mdp.events.randomize_rigid_body_material` function to + correctly sample friction and restitution from the given ranges. + + 0.24.19 (2024-10-05) ~~~~~~~~~~~~~~~~~~~~ diff --git a/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/mdp/events.py b/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/mdp/events.py index 8f2d737eb7..3eaeb650f9 100644 --- a/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/mdp/events.py +++ b/source/extensions/omni.isaac.lab/omni/isaac/lab/envs/mdp/events.py @@ -14,7 +14,6 @@ from __future__ import annotations -import numpy as np import torch from typing import TYPE_CHECKING, Literal @@ -25,22 +24,14 @@ import omni.isaac.lab.utils.math as math_utils from omni.isaac.lab.actuators import ImplicitActuator from omni.isaac.lab.assets import Articulation, DeformableObject, RigidObject -from omni.isaac.lab.managers import SceneEntityCfg +from omni.isaac.lab.managers import EventTermCfg, ManagerTermBase, SceneEntityCfg from omni.isaac.lab.terrains import TerrainImporter if TYPE_CHECKING: from omni.isaac.lab.envs import ManagerBasedEnv -def randomize_rigid_body_material( - env: ManagerBasedEnv, - env_ids: torch.Tensor | None, - static_friction_range: tuple[float, float], - dynamic_friction_range: tuple[float, float], - restitution_range: tuple[float, float], - num_buckets: int, - asset_cfg: SceneEntityCfg, -): +class randomize_rigid_body_material(ManagerTermBase): """Randomize the physics materials on all geometries of the asset. This function creates a set of physics materials with random static friction, dynamic friction, and restitution @@ -53,6 +44,10 @@ def randomize_rigid_body_material( all bodies). The integer values are used as indices to select the material properties from the material buckets. + If the flag ``make_consistent`` is set to ``True``, the dynamic friction is set to be less than or equal to + the static friction. This obeys the physics constraint on friction values. However, it may not always be + essential for the application. Thus, the flag is set to ``False`` by default. + .. attention:: This function uses CPU tensors to assign the material properties. It is recommended to use this function only during the initialization of the environment. Otherwise, it may lead to a significant performance @@ -60,69 +55,111 @@ def randomize_rigid_body_material( .. note:: PhysX only allows 64000 unique physics materials in the scene. If the number of materials exceeds this - limit, the simulation will crash. + limit, the simulation will crash. Due to this reason, we sample the materials only once during initialization. + Afterwards, these materials are randomly assigned to the geometries of the asset. """ - # extract the used quantities (to enable type-hinting) - asset: RigidObject | Articulation = env.scene[asset_cfg.name] - if not isinstance(asset, (RigidObject, Articulation)): - raise ValueError( - f"Randomization term 'randomize_rigid_body_material' not supported for asset: '{asset_cfg.name}'" - f" with type: '{type(asset)}'." - ) + def __init__(self, cfg: EventTermCfg, env: ManagerBasedEnv): + """Initialize the term. - # resolve environment ids - if env_ids is None: - env_ids = torch.arange(env.scene.num_envs, device="cpu") - else: - env_ids = env_ids.cpu() - - # retrieve material buffer - materials = asset.root_physx_view.get_material_properties() + Args: + cfg: The configuration of the event term. + env: The environment instance. - # sample material properties from the given ranges - material_samples = np.zeros(materials[env_ids].shape) - material_samples[..., 0] = np.random.uniform(*static_friction_range) - material_samples[..., 1] = np.random.uniform(*dynamic_friction_range) - material_samples[..., 2] = np.random.uniform(*restitution_range) + Raises: + ValueError: If the asset is not a RigidObject or an Articulation. + """ + super().__init__(cfg, env) - # create uniform range tensor for bucketing - lo = np.array([static_friction_range[0], dynamic_friction_range[0], restitution_range[0]]) - hi = np.array([static_friction_range[1], dynamic_friction_range[1], restitution_range[1]]) + # extract the used quantities (to enable type-hinting) + self.asset_cfg: SceneEntityCfg = cfg.params["asset_cfg"] + self.asset: RigidObject | Articulation = env.scene[self.asset_cfg.name] - # to avoid 64k material limit in physx, we bucket materials by binning randomized material properties - # into buckets based on the number of buckets specified - for d in range(3): - buckets = np.array([(hi[d] - lo[d]) * i / num_buckets + lo[d] for i in range(num_buckets)]) - material_samples[..., d] = buckets[np.searchsorted(buckets, material_samples[..., d]) - 1] + if not isinstance(self.asset, (RigidObject, Articulation)): + raise ValueError( + f"Randomization term 'randomize_rigid_body_material' not supported for asset: '{self.asset_cfg.name}'" + f" with type: '{type(self.asset)}'." + ) - # update material buffer with new samples - if isinstance(asset, Articulation) and asset_cfg.body_ids != slice(None): # obtain number of shapes per body (needed for indexing the material properties correctly) # note: this is a workaround since the Articulation does not provide a direct way to obtain the number of shapes # per body. We use the physics simulation view to obtain the number of shapes per body. - num_shapes_per_body = [] - for link_path in asset.root_physx_view.link_paths[0]: - link_physx_view = asset._physics_sim_view.create_rigid_body_view(link_path) # type: ignore - num_shapes_per_body.append(link_physx_view.max_shapes) + if isinstance(self.asset, Articulation) and self.asset_cfg.body_ids != slice(None): + self.num_shapes_per_body = [] + for link_path in self.asset.root_physx_view.link_paths[0]: + link_physx_view = self.asset._physics_sim_view.create_rigid_body_view(link_path) # type: ignore + self.num_shapes_per_body.append(link_physx_view.max_shapes) + # ensure the parsing is correct + num_shapes = sum(self.num_shapes_per_body) + expected_shapes = self.asset.root_physx_view.max_shapes + if num_shapes != expected_shapes: + raise ValueError( + "Randomization term 'randomize_rigid_body_material' failed to parse the number of shapes per body." + f" Expected total shapes: {expected_shapes}, but got: {num_shapes}." + ) + else: + # in this case, we don't need to do special indexing + self.num_shapes_per_body = None + + # obtain parameters for sampling friction and restitution values + static_friction_range = cfg.params.get("static_friction_range", (1.0, 1.0)) + dynamic_friction_range = cfg.params.get("dynamic_friction_range", (1.0, 1.0)) + restitution_range = cfg.params.get("restitution_range", (0.0, 0.0)) + num_buckets = int(cfg.params.get("num_buckets", 1)) # sample material properties from the given ranges - for body_id in asset_cfg.body_ids: - # start index of shape - start_idx = sum(num_shapes_per_body[:body_id]) - # end index of shape - end_idx = start_idx + num_shapes_per_body[body_id] - # assign the new materials - # material ids are of shape: num_env_ids x num_shapes - # material_buckets are of shape: num_buckets x 3 - materials[env_ids, start_idx:end_idx] = torch.from_numpy(material_samples[:, start_idx:end_idx]).to( - dtype=torch.float - ) - else: - materials[env_ids] = torch.from_numpy(material_samples).to(dtype=torch.float) + # note: we only sample the materials once during initialization + # afterwards these are randomly assigned to the geometries of the asset + range_list = [static_friction_range, dynamic_friction_range, restitution_range] + ranges = torch.tensor(range_list, device="cpu") + self.material_buckets = math_utils.sample_uniform(ranges[:, 0], ranges[:, 1], (num_buckets, 3), device="cpu") + + # ensure dynamic friction is always less than static friction + make_consistent = cfg.params.get("make_consistent", False) + if make_consistent: + self.material_buckets[:, 1] = torch.min(self.material_buckets[:, 0], self.material_buckets[:, 1]) + + def __call__( + self, + env: ManagerBasedEnv, + env_ids: torch.Tensor | None, + static_friction_range: tuple[float, float], + dynamic_friction_range: tuple[float, float], + restitution_range: tuple[float, float], + num_buckets: int, + asset_cfg: SceneEntityCfg, + make_consistent: bool = False, + ): + # resolve environment ids + if env_ids is None: + env_ids = torch.arange(env.scene.num_envs, device="cpu") + else: + env_ids = env_ids.cpu() + + # randomly assign material IDs to the geometries + total_num_shapes = self.asset.root_physx_view.max_shapes + bucket_ids = torch.randint(0, num_buckets, (len(env_ids), total_num_shapes), device="cpu") + material_samples = self.material_buckets[bucket_ids] + + # retrieve material buffer from the physics simulation + materials = self.asset.root_physx_view.get_material_properties() + + # update material buffer with new samples + if self.num_shapes_per_body is not None: + # sample material properties from the given ranges + for body_id in self.asset_cfg.body_ids: + # obtain indices of shapes for the body + start_idx = sum(self.num_shapes_per_body[:body_id]) + end_idx = start_idx + self.num_shapes_per_body[body_id] + # assign the new materials + # material samples are of shape: num_env_ids x total_num_shapes x 3 + materials[env_ids, start_idx:end_idx] = material_samples[:, start_idx:end_idx] + else: + # assign all the materials + materials[env_ids] = material_samples[:] - # apply to simulation - asset.root_physx_view.set_material_properties(materials, env_ids) + # apply to simulation + self.asset.root_physx_view.set_material_properties(materials, env_ids) def randomize_rigid_body_mass(