forked from ajbrock/BigGAN-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 5
/
train.py
264 lines (229 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
""" BigGAN: The Authorized Unofficial PyTorch release
Code by A. Brock and A. Andonian
This code is an unofficial reimplementation of
"Large-Scale GAN Training for High Fidelity Natural Image Synthesis,"
by A. Brock, J. Donahue, and K. Simonyan (arXiv 1809.11096).
Let's go.
"""
import os
import functools
import math
import numpy as np
from tqdm import tqdm, trange
import torch
import torch.nn as nn
from torch.nn import init
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import Parameter as P
import torchvision
# Import my stuff
import inception_utils
import utils
import losses
import train_fns
from sync_batchnorm import patch_replication_callback
# The main training file. Config is a dictionary specifying the configuration
# of this training run.
def run(config):
# Update the config dict as necessary
# This is for convenience, to add settings derived from the user-specified
# configuration into the config-dict (e.g. inferring the number of classes
# and size of the images from the dataset, passing in a pytorch object
# for the activation specified as a string)
config['resolution'] = utils.imsize_dict[config['dataset']]
config['n_classes'] = utils.nclass_dict[config['dataset']]
config['G_activation'] = utils.activation_dict[config['G_nl']]
config['D_activation'] = utils.activation_dict[config['D_nl']]
# By default, skip init if resuming training.
if config['resume']:
print('Skipping initialization for training resumption...')
config['skip_init'] = True
config = utils.update_config_roots(config)
device = 'cuda'
# Seed RNG
utils.seed_rng(config['seed'])
# Prepare root folders if necessary
utils.prepare_root(config)
# Setup cudnn.benchmark for free speed
torch.backends.cudnn.benchmark = True
# Import the model--this line allows us to dynamically select different files.
model = __import__(config['model'])
experiment_name = (config['experiment_name'] if config['experiment_name']
else utils.name_from_config(config))
print('Experiment name is %s' % experiment_name)
# Next, build the model
G = model.Generator(**config).to(device)
disc_config = config.copy()
if config['mh_csc_loss'] or config['mh_loss']:
disc_config['output_dim'] = disc_config['n_classes'] + 1
D = model.Discriminator(**disc_config).to(device)
# If using EMA, prepare it
if config['ema']:
print('Preparing EMA for G with decay of {}'.format(config['ema_decay']))
G_ema = model.Generator(**{**config, 'skip_init':True,
'no_optim': True}).to(device)
ema = utils.ema(G, G_ema, config['ema_decay'], config['ema_start'])
else:
G_ema, ema = None, None
# FP16?
if config['G_fp16']:
print('Casting G to float16...')
G = G.half()
if config['ema']:
G_ema = G_ema.half()
if config['D_fp16']:
print('Casting D to fp16...')
D = D.half()
# Consider automatically reducing SN_eps?
GD = model.G_D(G, D)
print(G)
print(D)
print('Number of params in G: {} D: {}'.format(
*[sum([p.data.nelement() for p in net.parameters()]) for net in [G,D]]))
# Prepare state dict, which holds things like epoch # and itr #
state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0,
'best_IS': 0, 'best_FID': 999999, 'config': config}
# If loading from a pre-trained model, load weights
if config['resume']:
print('Loading weights...')
name_suffix = config['load_weights'] if config['load_weights'] else None
if name_suffix is None and config['name_suffix']:
name_suffix = config['name_suffix']
utils.load_weights(G, D, state_dict,
config['weights_root'], experiment_name,
name_suffix if name_suffix else None,
G_ema if config['ema'] else None)
# If parallel, parallelize the GD module
if config['parallel']:
GD = nn.DataParallel(GD)
if config['cross_replica']:
patch_replication_callback(GD)
# Prepare loggers for stats; metrics holds test metrics,
# lmetrics holds any desired training metrics.
test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'],
experiment_name)
train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name)
print('Inception Metrics will be saved to {}'.format(test_metrics_fname))
test_log = utils.MetricsLogger(test_metrics_fname,
reinitialize=(not config['resume']))
print('Training Metrics will be saved to {}'.format(train_metrics_fname))
train_log = utils.MyLogger(train_metrics_fname,
reinitialize=(not config['resume']),
logstyle=config['logstyle'])
# Write metadata
utils.write_metadata(config['logs_root'], experiment_name, config, state_dict)
# Prepare data; the Discriminator's batch size is all that needs to be passed
# to the dataloader, as G doesn't require dataloading.
# Note that at every loader iteration we pass in enough data to complete
# a full D iteration (regardless of number of D steps and accumulations)
D_batch_size = (config['batch_size'] * config['num_D_steps']
* config['num_D_accumulations'])
loaders = utils.get_data_loaders(**{**config, 'batch_size': D_batch_size,
'start_itr': state_dict['itr']})
# Prepare inception metrics: FID and IS
if config['test_every'] > 0:
get_inception_metrics = inception_utils.prepare_inception_metrics(config['dataset'], config['parallel'], config['no_fid'])
# Prepare noise and randomly sampled label arrays
# Allow for different batch sizes in G
G_batch_size = max(config['G_batch_size'], config['batch_size'])
z_, y_ = utils.prepare_z_y(G_batch_size, G.dim_z, config['n_classes'],
device=device, fp16=config['G_fp16'])
# Prepare a fixed z & y to see individual sample evolution throghout training
fixed_z, fixed_y = utils.prepare_z_y(G_batch_size, G.dim_z,
config['n_classes'], device=device,
fp16=config['G_fp16'])
fixed_z.sample_()
fixed_y.sample_()
# Loaders are loaded, prepare the training function
if config['which_train_fn'] == 'GAN':
if config['use_unlabeled_data']:
print('Using unlabeled data training function...')
train = train_fns.GAN_training_function_with_unlabeled(G, D, GD, z_, y_,
ema, state_dict, config)
else:
train = train_fns.GAN_training_function(G, D, GD, z_, y_,
ema, state_dict, config)
# Else, assume debugging and use the dummy train fn
else:
train = train_fns.dummy_training_function()
# Prepare Sample function for use with inception metrics
sample = functools.partial(utils.sample,
G=(G_ema if config['ema'] and config['use_ema']
else G),
z_=z_, y_=y_, config=config)
print('Beginning training at epoch %d...' % state_dict['epoch'])
# Train for specified number of epochs, although we mostly track G iterations.
for epoch in range(state_dict['epoch'], config['num_epochs']):
# Which progressbar to use? TQDM or my own?
if config['pbar'] == 'mine':
pbar = utils.progress(loaders[0],displaytype='s1k' if config['use_multiepoch_sampler'] else 'eta')
else:
pbar = tqdm(loaders[0])
# If loader says len should be greater than 0, raise number epochs
for i, (x, y) in enumerate(pbar):
# Increment the iteration counter
state_dict['itr'] += 1
# Make sure G and D are in training mode, just in case they got set to eval
# For D, which typically doesn't have BN, this shouldn't matter much.
G.train()
D.train()
if config['ema']:
G_ema.train()
if config['D_fp16']:
x, y = x.to(device).half(), y.to(device)
else:
x, y = x.to(device), y.to(device)
if config['use_unlabeled_data']:
x2, _ = loaders[1].next()
x2 = x2.to(device)
metrics = train(x, y, x2)
else:
metrics = train(x, y)
train_log.log(itr=int(state_dict['itr']), **metrics)
# Every sv_log_interval, log singular values
if (config['sv_log_interval'] > 0) and (not (state_dict['itr'] % config['sv_log_interval'])):
train_log.log(itr=int(state_dict['itr']),
**{**utils.get_SVs(G, 'G'), **utils.get_SVs(D, 'D')})
# If using my progbar, print metrics.
if config['pbar'] == 'mine':
print(', '.join(['itr: %d' % state_dict['itr']]
+ ['%s : %+4.3f' % (key, metrics[key])
for key in metrics]), end=' ')
# Save weights and copies as configured at specified interval
if not (state_dict['itr'] % config['save_every']):
if config['G_eval_mode']:
print('Switchin G to eval mode...')
G.eval()
if config['ema']:
G_ema.eval()
train_fns.save_and_sample(G, D, G_ema, z_, y_, fixed_z, fixed_y,
state_dict, config, experiment_name)
# Historical saving of weights
if not (state_dict['itr'] % config['historical_save_every']):
if config['G_eval_mode']:
print('Switchin G to eval mode...')
G.eval()
if config['ema']:
G_ema.eval()
utils.save_weights(G, D, state_dict, config['weights_root'],
experiment_name,
('%06d' % state_dict['itr']),
G_ema if config['ema'] else None)
# Test every specified interval, skip the zeroth
if (config['test_every'] > 0) and (not ((state_dict['itr']+1) % config['test_every'])):
if config['G_eval_mode']:
print('Switchin G to eval mode...')
G.eval()
train_fns.test(G, D, G_ema, z_, y_, state_dict, config, sample,
get_inception_metrics, experiment_name, test_log)
# TODO: classifications live
state_dict['epoch'] += 1
def main():
# parse command line and run
parser = utils.prepare_parser()
config = vars(parser.parse_args())
print(config)
run(config)
if __name__ == '__main__':
main()