forked from ajbrock/BigGAN-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 5
/
datasets.py
380 lines (312 loc) · 12 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
''' Datasets
This file contains definitions for our CIFAR, ImageFolder, and HDF5 datasets
'''
import csv
import os
import os.path
import sys
from PIL import Image
import numpy as np
from tqdm import tqdm, trange
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torchvision.datasets.utils import download_url, check_integrity
import torch.utils.data as data
from torch.utils.data import DataLoader
import pdb
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm']
def is_image_file(filename):
"""Checks if a file is an image.
Args:
filename (string): path to a file
Returns:
bool: True if the filename ends with a known image extension
"""
filename_lower = filename.lower()
return any(filename_lower.endswith(ext) for ext in IMG_EXTENSIONS)
def find_classes(dir):
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(dir, class_to_idx):
images = []
dir = os.path.expanduser(dir)
for target in tqdm(sorted(os.listdir(dir))):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
for fname in sorted(fnames):
if is_image_file(fname):
path = os.path.join(root, fname)
item = (path, class_to_idx[target])
images.append(item)
return images
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class ImageFolder(data.Dataset):
"""A generic data loader where the images are arranged in this way: ::
root/dogball/xxx.png
root/dogball/xxy.png
root/dogball/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
Args:
root (string): Root directory path.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an image given its path.
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
imgs (list): List of (image path, class_index) tuples
"""
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader, load_in_mem=False,
index_filename='imagenet_imgs.npz', **kwargs):
classes, class_to_idx = find_classes(root)
# Load pre-computed image directory walk
if os.path.exists(index_filename):
print('Loading pre-saved Index file %s...' % index_filename)
imgs = np.load(index_filename)['imgs']
# If first time, walk the folder directory and save the
# results to a pre-computed file.
else:
print('Generating Index file %s...' % index_filename)
imgs = make_dataset(root, class_to_idx)
np.savez_compressed(index_filename, **{'imgs' : imgs})
if len(imgs) == 0:
raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.root = root
self.imgs = imgs
self.classes = classes
self.class_to_idx = class_to_idx
self.transform = transform
self.target_transform = target_transform
self.loader = loader
self.load_in_mem = load_in_mem
if self.load_in_mem:
print('Loading all images into memory...')
self.data, self.labels = [], []
for index in tqdm(range(len(self.imgs))):
path, target = imgs[index][0], imgs[index][1]
self.data.append(self.transform(self.loader(path)))
self.labels.append(target)
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
if self.load_in_mem:
img = self.data[index]
target = self.labels[index]
else:
path, target = self.imgs[index]
img = self.loader(str(path))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
# print(img.size(), target)
return img, int(target)
def __len__(self):
return len(self.imgs)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str
''' ILSVRC_HDF5: A dataset to support I/O from an HDF5 to avoid
having to load individual images all the time. '''
import h5py as h5
import torch
class ILSVRC_HDF5(data.Dataset):
def __init__(self, root, transform=None, target_transform=None,
load_in_mem=False, train=True,download=False, validate_seed=0,
val_split=0, **kwargs): # last four are dummies
self.root = root
self.num_imgs = len(h5.File(root, 'r')['labels'])
# self.transform = transform
self.target_transform = target_transform
# Set the transform here
self.transform = transform
# load the entire dataset into memory?
self.load_in_mem = load_in_mem
# If loading into memory, do so now
if self.load_in_mem:
print('Loading %s into memory...' % root)
with h5.File(root,'r') as f:
self.data = f['imgs'][:]
self.labels = f['labels'][:]
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
# If loaded the entire dataset in RAM, get image from memory
if self.load_in_mem:
img = self.data[index]
target = self.labels[index]
# Else load it from disk
else:
with h5.File(self.root,'r') as f:
img = f['imgs'][index]
target = f['labels'][index]
# if self.transform is not None:
# img = self.transform(img)
# Apply my own transform
img = ((torch.from_numpy(img).float() / 255) - 0.5) * 2
if self.target_transform is not None:
target = self.target_transform(target)
return img, int(target)
def __len__(self):
return self.num_imgs
# return len(self.f['imgs'])
import pickle
class CIFAR10(dset.CIFAR10):
def __init__(self, root, train=True,
transform=None, target_transform=None,
download=True, validate_seed=0,
val_split=0, load_in_mem=True, **kwargs):
self.root = os.path.expanduser(root)
self.transform = transform
self.target_transform = target_transform
self.train = train # training set or test set
self.val_split = val_split
if download:
self.download()
if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
# now load the picked numpy arrays
self.data = []
self.labels= []
for fentry in self.train_list:
f = fentry[0]
file = os.path.join(self.root, self.base_folder, f)
fo = open(file, 'rb')
if sys.version_info[0] == 2:
entry = pickle.load(fo)
else:
entry = pickle.load(fo, encoding='latin1')
self.data.append(entry['data'])
if 'labels' in entry:
self.labels += entry['labels']
else:
self.labels += entry['fine_labels']
fo.close()
self.data = np.concatenate(self.data)
# Randomly select indices for validation
if self.val_split > 0:
label_indices = [[] for _ in range(max(self.labels)+1)]
for i,l in enumerate(self.labels):
label_indices[l] += [i]
label_indices = np.asarray(label_indices)
# randomly grab 500 elements of each class
np.random.seed(validate_seed)
self.val_indices = []
for l_i in label_indices:
self.val_indices += list(l_i[np.random.choice(len(l_i), int(len(self.data) * val_split) // (max(self.labels) + 1) ,replace=False)])
if self.train=='validate':
self.data = self.data[self.val_indices]
self.labels = list(np.asarray(self.labels)[self.val_indices])
self.data = self.data.reshape((int(50e3 * self.val_split), 3, 32, 32))
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
elif self.train:
print(np.shape(self.data))
if self.val_split > 0:
self.data = np.delete(self.data,self.val_indices,axis=0)
self.labels = list(np.delete(np.asarray(self.labels),self.val_indices,axis=0))
self.data = self.data.reshape((int(50e3 * (1.-self.val_split)), 3, 32, 32))
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
else:
f = self.test_list[0][0]
file = os.path.join(self.root, self.base_folder, f)
fo = open(file, 'rb')
if sys.version_info[0] == 2:
entry = pickle.load(fo)
else:
entry = pickle.load(fo, encoding='latin1')
self.data = entry['data']
if 'labels' in entry:
self.labels = entry['labels']
else:
self.labels = entry['fine_labels']
fo.close()
self.data = self.data.reshape((10000, 3, 32, 32))
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.labels[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.data)
class CIFAR100(CIFAR10):
base_folder = 'cifar-100-python'
url = "http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
filename = "cifar-100-python.tar.gz"
tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
train_list = [
['train', '16019d7e3df5f24257cddd939b257f8d'],
]
test_list = [
['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
]
class STL10(dset.STL10):
"""
In the future could load unlabeled data in some special way too.
"""
def __init__(self, root, train=True, unlabeled=True,
transform=None, target_transform=None,
download=True, validate_seed=0,
val_split=0, load_in_mem=True, **kwargs):
if train:
super(STL10, self).__init__(root, transform=transform, download=download,
target_transform=target_transform)
elif unlabeled:
super(STL10, self).__init__(root, split='unlabeled', transform=transform,
target_transform=target_transform)
else:
super(STL10, self).__init__(root, split='test', transform=transform,
target_transform=target_transform)