Existing DD methods exhibit degraded performance when applied to imbalanced datasets, especially when the imbalance factor increases, whereas our method provides significantly better performance under different imbalanced scenarios.
- Create environment as follows
conda env create -f environment.yaml
conda activate distillation
- Generate expert trajectories
cd buffer
# representation experts
python buffer_FTD.py --cfg ../configs/buffer/CIFAR10_LT/imbrate_0005/first_stage_weight_balance.yaml
# classifier experts
python buffer_FTD.py --cfg ../configs/buffer/CIFAR10_LT/imbrate_0005/second_stage_weight_balance.yaml
- Perform the distillation
cd distill
python EDGE_tesla.py --cfg ../configs/xxxx.yaml
Our code is built upon MTT, FTD, and DATM.
If you find our code useful for your research, please cite our paper.
@article{zhao2024distilling,
title={Distilling Long-tailed Datasets},
author={Zhao, Zhenghao and Wang, Haoxuan and Shang, Yuzhang and Wang, Kai and Yan, Yan},
journal={arXiv preprint arXiv:2408.14506},
year={2024}
}