-
Notifications
You must be signed in to change notification settings - Fork 0
/
vec-add.c
110 lines (90 loc) · 3.48 KB
/
vec-add.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include "timing.h"
#include "cl-helper.h"
int main(int argc, char **argv)
{
if (argc != 3)
{
fprintf(stderr, "need two arguments!\n");
abort();
}
const cl_long n = atol(argv[1]);
const int ntrips = atoi(argv[2]);
cl_context ctx;
cl_command_queue queue;
create_context_on("Intel", NULL, 0, &ctx, &queue, 0);
// --------------------------------------------------------------------------
// load kernels
// --------------------------------------------------------------------------
char *knl_text = read_file("vec-add.cl");
cl_kernel knl = kernel_from_string(ctx, knl_text, "sum", NULL);
free(knl_text);
// --------------------------------------------------------------------------
// allocate and initialize CPU memory
// --------------------------------------------------------------------------
double *a = (double *) malloc(sizeof(double) * n);
if (!a) { perror("alloc x"); abort(); }
double *b = (double *) malloc(sizeof(double) * n);
if (!b) { perror("alloc y"); abort(); }
double *c = (double *) malloc(sizeof(double) * n);
if (!c) { perror("alloc z"); abort(); }
for (size_t i = 0; i < n; ++i)
{
a[i] = i;
b[i] = 2*i;
}
// --------------------------------------------------------------------------
// allocate device memory
// --------------------------------------------------------------------------
cl_int status;
cl_mem buf_a = clCreateBuffer(ctx, CL_MEM_READ_WRITE,
sizeof(double) * n, 0, &status);
CHECK_CL_ERROR(status, "clCreateBuffer");
cl_mem buf_b = clCreateBuffer(ctx, CL_MEM_READ_WRITE,
sizeof(double) * n, 0, &status);
CHECK_CL_ERROR(status, "clCreateBuffer");
cl_mem buf_c = clCreateBuffer(ctx, CL_MEM_READ_WRITE,
sizeof(double) * n, 0, &status);
CHECK_CL_ERROR(status, "clCreateBuffer");
// --------------------------------------------------------------------------
// transfer to device
// --------------------------------------------------------------------------
CALL_CL_GUARDED(clEnqueueWriteBuffer, (
queue, buf_a, /*blocking*/ CL_FALSE, /*offset*/ 0,
n * sizeof(double), a,
0, NULL, NULL));
CALL_CL_GUARDED(clEnqueueWriteBuffer, (
queue, buf_b, /*blocking*/ CL_FALSE, /*offset*/ 0,
n * sizeof(double), b,
0, NULL, NULL));
// --------------------------------------------------------------------------
// run code on device
// --------------------------------------------------------------------------
timestamp_type time1, time2;
get_timestamp(&time1);
for (int trip = 0; trip < ntrips; ++trip)
{
SET_4_KERNEL_ARGS(knl, buf_a, buf_b, buf_c, n);
size_t ldim[] = { 1 };
size_t gdim[] = { 1 };
CALL_CL_GUARDED(clEnqueueNDRangeKernel,
(queue, knl,
/*dimensions*/ 1, NULL, gdim, ldim,
0, NULL, NULL));
}
get_timestamp(&time2);
double elapsed = timestamp_diff_in_seconds(time1,time2)/ntrips;
printf("%f s\n", elapsed);
printf("%f GB/s\n",
3*n*sizeof(double)/1e9/elapsed);
// --------------------------------------------------------------------------
// clean up
// --------------------------------------------------------------------------
CALL_CL_GUARDED(clFinish, (queue));
CALL_CL_GUARDED(clReleaseMemObject, (buf_a));
CALL_CL_GUARDED(clReleaseMemObject, (buf_b));
CALL_CL_GUARDED(clReleaseMemObject, (buf_c));
CALL_CL_GUARDED(clReleaseKernel, (knl));
CALL_CL_GUARDED(clReleaseCommandQueue, (queue));
CALL_CL_GUARDED(clReleaseContext, (ctx));
return 0;
}