-
Notifications
You must be signed in to change notification settings - Fork 38
/
dataloader.py
225 lines (189 loc) · 9.7 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import random
import torch
import torchvision.transforms as T
from PIL import Image
from torch.utils import data
def rreplace(s, old, new, occurrence):
li = s.rsplit(old, occurrence)
return new.join(li)
class ImageAttr(data.Dataset):
"""Dataset class for the ImageAttr dataset."""
def __init__(self, image_dir, attr_path, transform, mode,
binary=False, n_style=4,
char_num=52, unsuper_num=968, train_num=120, val_num=28):
"""Initialize and preprocess the ImageAttr dataset."""
self.image_dir = image_dir
self.attr_path = attr_path
self.n_style = n_style
self.transform = transform
self.mode = mode
self.binary = binary
self.super_train_dataset = []
self.super_test_dataset = []
self.unsuper_train_dataset = []
self.attr2idx = {}
self.idx2attr = {}
self.char_num = char_num
self.unsupervised_font_num = unsuper_num
self.train_font_num = train_num
self.val_font_num = val_num
self.test_super_unsuper = {}
for super_font in range(self.train_font_num+self.val_font_num):
self.test_super_unsuper[super_font] = random.randint(0, self.unsupervised_font_num - 1)
self.char_idx_offset = 10
self.chars = [c for c in range(self.char_idx_offset, self.char_idx_offset+self.char_num)]
self.preprocess()
if mode == 'train':
self.num_images = len(self.super_train_dataset) + len(self.unsuper_train_dataset)
else:
self.num_images = len(self.super_test_dataset)
def preprocess(self):
"""Preprocess the font attribute file."""
lines = [line.rstrip() for line in open(self.attr_path, 'r')]
all_attr_names = lines[0].split()
for i, attr_name in enumerate(all_attr_names):
self.attr2idx[attr_name] = i
self.idx2attr[i] = attr_name
lines = lines[1:]
train_size = self.char_num * self.train_font_num
val_size = self.char_num * self.val_font_num
for i, line in enumerate(lines):
split = line.split()
filename = split[0]
values = split[1:]
target_char = filename.split('/')[1].split('.')[0]
char_class = int(target_char) - self.char_idx_offset
font_class = int(i / self.char_num)
attr_value = []
for val in values:
if self.binary:
attr_value.append(val == '1')
else:
attr_value.append(eval(val) / 100.0)
# print(filename, char_class, font_class, attr_value)
if i < train_size:
self.super_train_dataset.append([filename, char_class, font_class, attr_value])
elif i < train_size + val_size:
self.super_test_dataset.append([filename, char_class, font_class, attr_value])
else:
self.unsuper_train_dataset.append([filename, char_class, font_class, attr_value])
print('Finished preprocessing the Image Attribute (Explo) dataset...')
def __getitem__(self, index):
"""Return one image and its corresponding attribute label."""
# dataset = self.super_train_dataset if self.mode == 'train' else self.super_test_dataset
if self.mode == 'train':
if index < len(self.super_train_dataset):
filename_A, charclass_A, fontclass_A, attr_A = self.super_train_dataset[index]
label_A = 1.0
font_embed_A = self.unsupervised_font_num # dummy id 968
# B is supervised or unsupervised
sample_p = random.random()
if sample_p < 0.5:
# Unsupervise
index_B = index % self.char_num + self.char_num * random.randint(0, self.unsupervised_font_num - 1)
filename_B, charclass_B, fontclass_B, attr_B = self.unsuper_train_dataset[index_B]
label_B = 0.0
font_embed_B = fontclass_B - self.train_font_num - self.val_font_num # convert to [0, 967]
else:
# Supervise
# get B from supervise train !!
index_B = index % self.char_num + self.char_num * random.randint(0, self.train_font_num - 1)
filename_B, charclass_B, fontclass_B, attr_B = self.super_train_dataset[index_B]
label_B = 1.0
font_embed_B = self.unsupervised_font_num # dummy id 968
else:
# get A from unsupervise train !!
index = index - len(self.super_train_dataset)
filename_A, charclass_A, fontclass_A, attr_A = self.unsuper_train_dataset[index]
label_A = 0.0
font_embed_A = fontclass_A - self.train_font_num - self.val_font_num
# B is supervised or unsupervised
sample_p = random.random()
if sample_p < 0.5:
# Unsupervise
index_B = index % self.char_num + self.char_num * random.randint(0, self.unsupervised_font_num - 1) # noqa
filename_B, charclass_B, fontclass_B, attr_B = self.unsuper_train_dataset[index_B]
label_B = 0.0
font_embed_B = fontclass_B - self.train_font_num - self.val_font_num # convert to [0, 967]
else:
# Supervise
# get B from supervise train !!
index_B = index % self.char_num + self.char_num * random.randint(0, self.train_font_num - 1)
filename_B, charclass_B, fontclass_B, attr_B = self.super_train_dataset[index_B]
label_B = 1.0
font_embed_B = self.unsupervised_font_num # dummy id 968
else:
# load the random one from unsupervise data as the reference aka A
# unsuper to super
font_index_super = index // self.char_num + self.train_font_num
font_index_unsuper = self.test_super_unsuper[font_index_super]
char_index_unsuper = index % self.char_num + self.char_num * font_index_unsuper
filename_A, charclass_A, fontclass_A, attr_A = self.unsuper_train_dataset[char_index_unsuper]
label_A = 0.0
font_embed_A = fontclass_A - self.train_font_num - self.val_font_num # convert to [0, 967]
filename_B, charclass_B, fontclass_B, attr_B = self.super_test_dataset[index]
label_B = 1.0
font_embed_B = self.unsupervised_font_num # dummy id 968
# Get style samples
random.shuffle(self.chars)
style_chars = self.chars[:self.n_style]
styles_A = []
if self.n_style == 1:
styles_A.append(filename_A)
else:
for char in style_chars:
styles_A.append(rreplace(filename_A, str(charclass_A+10), str(char), 1))
random.shuffle(self.chars)
style_chars = self.chars[:self.n_style]
styles_B = []
if self.n_style == 1:
styles_B.append(filename_B)
else:
for char in style_chars:
styles_B.append(rreplace(filename_B, str(charclass_B+10), str(char), 1))
image_A = Image.open(os.path.join(self.image_dir, filename_A)).convert('RGB')
image_B = Image.open(os.path.join(self.image_dir, filename_B)).convert('RGB')
# Open and transform style images
style_imgs_A = []
for style_A in styles_A:
style_imgs_A.append(self.transform(Image.open(os.path.join(self.image_dir, style_A)).convert('RGB')))
style_imgs_A = torch.cat(style_imgs_A)
style_imgs_B = []
for style_B in styles_B:
style_imgs_B.append(self.transform(Image.open(os.path.join(self.image_dir, style_B)).convert('RGB')))
style_imgs_B = torch.cat(style_imgs_B)
return {"img_A": self.transform(image_A), "charclass_A": torch.LongTensor([charclass_A]),
"fontclass_A": torch.LongTensor([fontclass_A]), "attr_A": torch.FloatTensor(attr_A),
"styles_A": style_imgs_A,
"fontembed_A": torch.LongTensor([font_embed_A]),
"label_A": torch.FloatTensor([label_A]),
"img_B": self.transform(image_B), "charclass_B": torch.LongTensor([charclass_B]),
"fontclass_B": torch.LongTensor([fontclass_B]), "attr_B": torch.FloatTensor(attr_B),
"styles_B": style_imgs_B,
"fontembed_B": torch.LongTensor([font_embed_B]),
"label_B": torch.FloatTensor([label_B])}
def __len__(self):
"""Return the number of images."""
return self.num_images
def get_loader(image_dir, attr_path, image_size=256,
batch_size=16, dataset_name='explor_all', mode='train', num_workers=8,
binary=False, n_style=4,
char_num=52, unsuper_num=968, train_num=120, val_num=28):
"""Build and return a data loader."""
transform = []
transform.append(T.Resize(image_size))
transform.append(T.ToTensor())
transform.append(T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
transform = T.Compose(transform)
if dataset_name == 'explor_all':
dataset = ImageAttr(image_dir, attr_path, transform,
mode, binary, n_style,
char_num=52, unsuper_num=968,
train_num=120, val_num=28)
data_loader = data.DataLoader(dataset=dataset,
drop_last=True,
batch_size=batch_size,
shuffle=(mode == 'train'),
num_workers=num_workers)
return data_loader