This repository has been archived by the owner on Sep 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 316
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
PiperOrigin-RevId: 547950082
- Loading branch information
Showing
2 changed files
with
173 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
# Copyright 2023 The PEGASUS Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""OOD analysis for seq2seq models.""" | ||
# | ||
# pylint: disable=invalid-name | ||
# pylint: disable=g-long-lambda | ||
|
||
from pegasus.models import transformer | ||
|
||
|
||
class OODTransformerEncoderDecoderModel( | ||
transformer.TransformerEncoderDecoderModel): | ||
"""Model used for out of distribution detection. | ||
Outputs | ||
""" | ||
|
||
def predict(self, # pytype: disable=signature-mismatch # overriding-parameter-count-checks | ||
features, | ||
max_decode_len, | ||
beam_size, | ||
**kwargs): | ||
inputs_BxI, targets_BxT = features["inputs"], features["targets"] | ||
|
||
extra_outputs = {"input_ids": inputs_BxI, "target_ids": targets_BxT} | ||
|
||
context_BxU = self._encode(features, False) | ||
input_states = self._encoder_features[-1] # shape = BxIxD | ||
extra_outputs["input_states"] = input_states | ||
|
||
self._decode(context_BxU, targets_BxT, False) | ||
target_states = self._decoder_features[-1] | ||
extra_outputs["target_states"] = target_states | ||
|
||
outputs = super().predict(features, max_decode_len, beam_size, **kwargs) | ||
predicts_BxT = outputs["outputs"] | ||
self._decode(context_BxU, predicts_BxT, False) | ||
predict_states = self._decoder_features[-1] | ||
extra_outputs["predict_states"] = predict_states | ||
extra_outputs["predict_ids"] = predicts_BxT | ||
|
||
outputs.update(extra_outputs) | ||
return outputs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
# Copyright 2023 The PEGASUS Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Pegasus Params for OOD detection.""" | ||
import functools | ||
|
||
from pegasus.data import parsers | ||
from pegasus.eval import estimator_metrics | ||
from pegasus.eval import text_eval | ||
from pegasus.models import transformer | ||
from pegasus.ops import public_parsing_ops | ||
from pegasus.params import pegasus_params | ||
from pegasus.params import registry | ||
from tensorflow.contrib import training as contrib_training | ||
|
||
|
||
@registry.register("ood_pegasus_large") | ||
def ood_pegasus_large_params(param_overrides): | ||
"""Params for OODTransformerEncoderDecoderModel. | ||
Args: | ||
param_overrides: a string, comma separated list of name=value | ||
Returns: | ||
A instance of HParams | ||
""" | ||
|
||
hparams = contrib_training.HParams( | ||
train_pattern="", | ||
dev_pattern="", | ||
test_pattern="tfds:xsum-test", | ||
vocab_filename="pegasus/ops/testdata/sp_test.model", | ||
encoder_type="sentencepiece_newline", | ||
length_bucket_size=0, | ||
add_task_id=False, | ||
batch_size=2, | ||
max_input_len=1024, | ||
max_target_len=128, | ||
max_decode_len=128, | ||
hidden_size=1024, | ||
filter_size=4096, | ||
num_heads=16, | ||
num_encoder_layers=16, | ||
num_decoder_layers=16, | ||
beam_size=5, | ||
beam_start=5, | ||
beam_alpha=0.8, | ||
beam_min=0, | ||
beam_max=-1, | ||
temperature=0.0, | ||
top_k=0, | ||
top_p=0.0, | ||
optimizer_name="adafactor", | ||
train_steps=0, | ||
learning_rate=0.0, | ||
label_smoothing=0.1, | ||
dropout=0.1, | ||
eval_max_predictions=1000, | ||
use_bfloat16=False, | ||
model=None, | ||
parser=None, | ||
encoder=None, | ||
estimator_prediction_fn=None, | ||
eval=None, | ||
estimator_eval_metrics_fn=estimator_metrics.gen_eval_metrics_fn, | ||
) | ||
|
||
if param_overrides: | ||
hparams.parse(param_overrides) | ||
|
||
hparams.parser = functools.partial( | ||
parsers.supervised_strings_parser, | ||
hparams.vocab_filename, | ||
hparams.encoder_type, | ||
hparams.max_input_len, | ||
hparams.max_target_len, | ||
length_bucket_size=hparams.length_bucket_size, | ||
length_bucket_start_id=pegasus_params.LENGTH_BUCKET_START_ID, | ||
length_bucket_max_id=pegasus_params.TASK_START_ID - 1, | ||
add_task_id=hparams.add_task_id, | ||
task_start_id=pegasus_params.TASK_START_ID) | ||
|
||
hparams.encoder = public_parsing_ops.create_text_encoder( | ||
hparams.encoder_type, hparams.vocab_filename) | ||
|
||
hparams.model = functools.partial( | ||
transformer.OODTransformerEncoderDecoderModel, hparams.encoder.vocab_size, | ||
hparams.hidden_size, hparams.filter_size, hparams.num_heads, | ||
hparams.num_encoder_layers, hparams.num_decoder_layers, | ||
hparams.label_smoothing, hparams.dropout) | ||
|
||
beam_keys = ("beam_start", "beam_alpha", "beam_min", "beam_max", | ||
"temperature", "top_k", "top_p") | ||
beam_kwargs = {k: hparams.get(k) for k in beam_keys if k in hparams.values()} | ||
|
||
def decode_fn(features): | ||
return hparams.model().predict(features, hparams.max_decode_len, | ||
hparams.beam_size, **beam_kwargs) | ||
|
||
hparams.estimator_prediction_fn = decode_fn | ||
hparams.eval = functools.partial( | ||
text_eval.text_eval, | ||
hparams.encoder, | ||
num_reserved=pegasus_params.NUM_RESERVED_TOKENS) | ||
|
||
return hparams | ||
|