-
Notifications
You must be signed in to change notification settings - Fork 119
/
arc.mm
1057 lines (983 loc) · 26.4 KB
/
arc.mm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#define _LIBCPP_NO_EXCEPTIONS 1
#define TSL_NO_EXCEPTIONS 1
// Libc++ < 13 requires this for <vector> to be header only. It is ignored in
// libc++ >= 14
#define _LIBCPP_DISABLE_EXTERN_TEMPLATE 1
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <vector>
#include <tsl/robin_map.h>
#import "lock.h"
#import "objc/runtime.h"
#ifdef EMBEDDED_BLOCKS_RUNTIME
#import "objc/blocks_private.h"
#import "objc/blocks_runtime.h"
#else
#include <Block.h>
#include <Block_private.h>
#endif
#import "nsobject.h"
#import "class.h"
#import "selector.h"
#import "visibility.h"
#import "objc/hooks.h"
#import "objc/objc-arc.h"
#include "objc/message.h"
/**
* Helper to send a manual message for retain / release.
* We cannot use [object retain] and friends because recent clang will turn
* that into a call to `objc_retain`, causing infinite recursion.
*/
#ifdef __GNUSTEP_MSGSEND__
#define ManualRetainReleaseMessage(object, selName, types) \
((types)objc_msgSend)(object, @selector(selName))
#else
#define ManualRetainReleaseMessage(object, selName, types) \
((types)(objc_msg_lookup(object, @selector(selName))))(object, @selector(selName))
#endif
extern "C" id (*_objc_weak_load)(id object);
#if defined(_WIN32)
// We're using the Fiber-Local Storage APIs on Windows
// because the TLS APIs won't pass app certification.
// Additionally, the FLS API surface is 1:1 mapped to
// the TLS API surface when fibers are not in use.
# include "safewindows.h"
# define arc_tls_store FlsSetValue
# define arc_tls_load FlsGetValue
# define TLS_CALLBACK(name) void WINAPI name
typedef DWORD arc_tls_key_t;
typedef void WINAPI(*arc_cleanup_function_t)(void*);
static inline arc_tls_key_t arc_tls_key_create(arc_cleanup_function_t cleanupFunction)
{
return FlsAlloc(cleanupFunction);
}
#else // if defined(_WIN32)
# ifndef NO_PTHREADS
# include <pthread.h>
# define arc_tls_store pthread_setspecific
# define arc_tls_load pthread_getspecific
# define TLS_CALLBACK(name) void name
typedef pthread_key_t arc_tls_key_t;
typedef void (*arc_cleanup_function_t)(void*);
static inline arc_tls_key_t arc_tls_key_create(arc_cleanup_function_t cleanupFunction)
{
pthread_key_t key;
pthread_key_create(&key, cleanupFunction);
return key;
}
# endif
#endif
#ifdef arc_tls_store
arc_tls_key_t ARCThreadKey;
#endif
#ifndef HAVE_BLOCK_USE_RR2
extern "C"
{
extern struct objc_class _NSConcreteMallocBlock;
extern struct objc_class _NSConcreteStackBlock;
extern struct objc_class _NSConcreteGlobalBlock;
extern struct objc_class _NSConcreteAutoBlock;
extern struct objc_class _NSConcreteFinalizingBlock;
}
#endif
@interface NSAutoreleasePool
+ (Class)class;
+ (id)new;
- (void)release;
@end
#define POOL_SIZE (4096 / sizeof(void*) - (2 * sizeof(void*)))
/**
* Structure used for ARC-managed autorelease pools. This structure should be
* exactly one page in size, so that it can be quickly allocated. This does
* not correspond directly to an autorelease pool. The 'pool' returned by
* objc_autoreleasePoolPush() may be an interior pointer to one of these
* structures.
*/
struct arc_autorelease_pool
{
/**
* Pointer to the previous autorelease pool structure in the chain. Set
* when pushing a new structure on the stack, popped during cleanup.
*/
struct arc_autorelease_pool *previous;
/**
* The current insert point.
*/
id *insert;
/**
* The remainder of the page, an array of object pointers.
*/
id pool[POOL_SIZE];
};
struct arc_tls
{
struct arc_autorelease_pool *pool;
id returnRetained;
};
/**
* Type-safe wrapper around calloc.
*/
template<typename T>
static inline T* new_zeroed()
{
return static_cast<T*>(calloc(sizeof(T), 1));
}
static inline struct arc_tls* getARCThreadData(void)
{
#ifndef arc_tls_store
return NULL;
#else // !defined arc_tls_store
auto tls = static_cast<struct arc_tls*>(arc_tls_load(ARCThreadKey));
if (NULL == tls)
{
tls = new_zeroed<struct arc_tls>();
arc_tls_store(ARCThreadKey, tls);
}
return tls;
#endif
}
static inline void release(id obj);
/**
* Empties objects from the autorelease pool, stating at the head of the list
* specified by pool and continuing until it reaches the stop point. If the stop point is NULL then
*/
static void emptyPool(struct arc_tls *tls, void *stop)
{
struct arc_autorelease_pool *stopPool = NULL;
if (NULL != stop)
{
stopPool = tls->pool;
while (1)
{
// Invalid stop location
if (NULL == stopPool)
{
return;
}
// NULL is the placeholder for the top-level pool
if (NULL == stop && stopPool->previous == NULL)
{
break;
}
// Stop location was found in this pool
if ((stop >= stopPool->pool) && (stop < &stopPool->pool[POOL_SIZE]))
{
break;
}
stopPool = stopPool->previous;
}
}
do {
while (tls->pool != stopPool)
{
while (tls->pool->insert > tls->pool->pool)
{
tls->pool->insert--;
// This may autorelease some other objects, so we have to work in
// the case where the autorelease pool is extended during a -release.
release(*tls->pool->insert);
}
void *old = tls->pool;
tls->pool = tls->pool->previous;
free(old);
}
if (NULL == tls->pool) break;
while ((stop == NULL || (tls->pool->insert > stop)) &&
(tls->pool->insert > tls->pool->pool))
{
tls->pool->insert--;
release(*tls->pool->insert);
}
} while (tls->pool != stopPool);
//fprintf(stderr, "New insert: %p. Stop: %p\n", tls->pool->insert, stop);
}
#ifdef arc_tls_store
static TLS_CALLBACK(cleanupPools)(struct arc_tls* tls)
{
if (tls->returnRetained)
{
release(tls->returnRetained);
tls->returnRetained = nil;
}
if (NULL != tls->pool)
{
emptyPool(tls, NULL);
assert(NULL == tls->pool);
}
if (tls->returnRetained)
{
cleanupPools(tls);
}
free(tls);
}
#endif
static Class AutoreleasePool;
static IMP NewAutoreleasePool;
static IMP DeleteAutoreleasePool;
static IMP AutoreleaseAdd;
static BOOL useARCAutoreleasePool;
static const long refcount_shift = 1;
/**
* We use the top bit of the reference count to indicate whether an object has
* ever had a weak reference taken. This lets us avoid acquiring the weak
* table lock for most objects on deallocation.
*/
static const size_t weak_mask = ((size_t)1)<<((sizeof(size_t)*8)-refcount_shift);
/**
* All of the bits other than the top bit are the real reference count.
*/
static const size_t refcount_mask = ~weak_mask;
static const size_t refcount_max = refcount_mask - 1;
extern "C" OBJC_PUBLIC size_t object_getRetainCount_np(id obj)
{
uintptr_t *refCount = ((uintptr_t*)obj) - 1;
uintptr_t refCountVal = __sync_fetch_and_add(refCount, 0);
size_t realCount = refCountVal & refcount_mask;
return realCount == refcount_mask ? 0 : realCount + 1;
}
static id retain_fast(id obj, BOOL isWeak)
{
uintptr_t *refCount = ((uintptr_t*)obj) - 1;
uintptr_t refCountVal = __sync_fetch_and_add(refCount, 0);
uintptr_t newVal = refCountVal;
do {
refCountVal = newVal;
size_t realCount = refCountVal & refcount_mask;
// If this object's reference count is already less than 0, then
// this is a spurious retain. This can happen when one thread is
// attempting to acquire a strong reference from a weak reference
// and the other thread is attempting to destroy it. The
// deallocating thread will decrement the reference count with no
// locks held and will then acquire the weak ref table lock and
// attempt to zero the weak references. The caller of this will be
// `objc_loadWeakRetained`, which will also hold the lock. If the
// serialisation is such that the locked retain happens after the
// decrement, then we return nil here so that the weak-to-strong
// transition doesn't happen and the object is actually destroyed.
// If the serialisation happens the other way, then the locked
// check of the reference count will happen after we've referenced
// this and we don't zero the references or deallocate.
if (realCount == refcount_mask)
{
return isWeak ? nil : obj;
}
// If the reference count is saturated, don't increment it.
if (realCount == refcount_max)
{
return obj;
}
realCount++;
realCount |= refCountVal & weak_mask;
uintptr_t updated = (uintptr_t)realCount;
newVal = __sync_val_compare_and_swap(refCount, refCountVal, updated);
} while (newVal != refCountVal);
return obj;
}
extern "C" OBJC_PUBLIC id objc_retain_fast_np(id obj)
{
return retain_fast(obj, NO);
}
__attribute__((always_inline))
static inline BOOL isPersistentObject(id obj)
{
// No reference count manipulations on nil objects.
if (obj == nil)
{
return YES;
}
// Small objects are never accessibly by reference
if (isSmallObject(obj))
{
return YES;
}
// Persistent objects are persistent. Safe to access isa directly here
// because we've already handled the small object case separately.
return objc_test_class_flag(obj->isa, objc_class_flag_permanent_instances);
}
static inline id retain(id obj, BOOL isWeak)
{
if (isPersistentObject(obj)) { return obj; }
Class cls = obj->isa;
if (UNLIKELY(objc_test_class_flag(cls, objc_class_flag_is_block)))
{
return Block_copy(obj);
}
if (objc_test_class_flag(cls, objc_class_flag_fast_arc))
{
return retain_fast(obj, isWeak);
}
return ManualRetainReleaseMessage(obj, retain, id(*)(id, SEL));
}
extern "C" OBJC_PUBLIC BOOL objc_release_fast_no_destroy_np(id obj)
{
uintptr_t *refCount = ((uintptr_t*)obj) - 1;
uintptr_t refCountVal = __sync_fetch_and_add(refCount, 0);
uintptr_t newVal = refCountVal;
bool isWeak;
bool shouldFree;
do {
refCountVal = newVal;
size_t realCount = refCountVal & refcount_mask;
// If the reference count is saturated or deallocating, don't decrement it.
if (realCount >= refcount_max)
{
return NO;
}
realCount--;
isWeak = (refCountVal & weak_mask) == weak_mask;
shouldFree = realCount == -1;
realCount |= refCountVal & weak_mask;
uintptr_t updated = (uintptr_t)realCount;
newVal = __sync_val_compare_and_swap(refCount, refCountVal, updated);
} while (newVal != refCountVal);
if (shouldFree)
{
if (isWeak)
{
if (!objc_delete_weak_refs(obj))
{
return NO;
}
}
return YES;
}
return NO;
}
extern "C" OBJC_PUBLIC void objc_release_fast_np(id obj)
{
if (objc_release_fast_no_destroy_np(obj))
{
[obj dealloc];
}
}
static inline void release(id obj)
{
if (isPersistentObject(obj)) { return; }
Class cls = obj->isa;
if (UNLIKELY(objc_test_class_flag(cls, objc_class_flag_is_block)))
{
if (cls == static_cast<void*>(&_NSConcreteStackBlock))
{
return;
}
_Block_release(obj);
return;
}
if (objc_test_class_flag(cls, objc_class_flag_fast_arc))
{
objc_release_fast_np(obj);
return;
}
return ManualRetainReleaseMessage(obj, release, void(*)(id, SEL));
}
static inline void initAutorelease(void)
{
if (Nil == AutoreleasePool)
{
AutoreleasePool = objc_getClass("NSAutoreleasePool");
if (Nil == AutoreleasePool)
{
useARCAutoreleasePool = YES;
}
else
{
useARCAutoreleasePool = (0 != class_getInstanceMethod(AutoreleasePool,
SELECTOR(_ARCCompatibleAutoreleasePool)));
if (!useARCAutoreleasePool)
{
[AutoreleasePool class];
NewAutoreleasePool = class_getMethodImplementation(object_getClass(AutoreleasePool),
SELECTOR(new));
DeleteAutoreleasePool = class_getMethodImplementation(AutoreleasePool,
SELECTOR(release));
AutoreleaseAdd = class_getMethodImplementation(object_getClass(AutoreleasePool),
SELECTOR(addObject:));
}
}
}
}
static inline id autorelease(id obj)
{
//fprintf(stderr, "Autoreleasing %p\n", obj);
if (useARCAutoreleasePool)
{
struct arc_tls *tls = getARCThreadData();
if (NULL != tls)
{
struct arc_autorelease_pool *pool = tls->pool;
if (NULL == pool || (pool->insert >= &pool->pool[POOL_SIZE]))
{
pool = new_zeroed<struct arc_autorelease_pool>();
pool->previous = tls->pool;
pool->insert = pool->pool;
tls->pool = pool;
}
*pool->insert = obj;
pool->insert++;
return obj;
}
}
if (objc_test_class_flag(classForObject(obj), objc_class_flag_fast_arc))
{
initAutorelease();
if (0 != AutoreleaseAdd)
{
AutoreleaseAdd(AutoreleasePool, SELECTOR(addObject:), obj);
}
return obj;
}
return ManualRetainReleaseMessage(obj, autorelease, id(*)(id, SEL));
}
extern "C" OBJC_PUBLIC unsigned long objc_arc_autorelease_count_np(void)
{
struct arc_tls* tls = getARCThreadData();
unsigned long count = 0;
if (!tls) { return 0; }
for (struct arc_autorelease_pool *pool=tls->pool ;
NULL != pool ;
pool = pool->previous)
{
count += (((intptr_t)pool->insert) - ((intptr_t)pool->pool)) / sizeof(id);
}
return count;
}
extern "C" OBJC_PUBLIC unsigned long objc_arc_autorelease_count_for_object_np(id obj)
{
struct arc_tls* tls = getARCThreadData();
unsigned long count = 0;
if (!tls) { return 0; }
for (struct arc_autorelease_pool *pool=tls->pool ;
NULL != pool ;
pool = pool->previous)
{
for (id* o = pool->insert-1 ; o >= pool->pool ; o--)
{
if (*o == obj)
{
count++;
}
}
}
return count;
}
extern "C" OBJC_PUBLIC void *objc_autoreleasePoolPush(void)
{
initAutorelease();
struct arc_tls* tls = getARCThreadData();
// If there is an object in the return-retained slot, then we need to
// promote it to the real autorelease pool BEFORE pushing the new
// autorelease pool. If we don't, then it may be prematurely autoreleased.
if ((NULL != tls) && (nil != tls->returnRetained))
{
autorelease(tls->returnRetained);
tls->returnRetained = nil;
}
if (useARCAutoreleasePool)
{
if (NULL != tls)
{
struct arc_autorelease_pool *pool = tls->pool;
if (NULL == pool || (pool->insert >= &pool->pool[POOL_SIZE]))
{
pool = new_zeroed<struct arc_autorelease_pool>();
pool->previous = tls->pool;
pool->insert = pool->pool;
tls->pool = pool;
}
// If there is no autorelease pool allocated for this thread, then
// we lazily allocate one the first time something is autoreleased.
return (NULL != tls->pool) ? tls->pool->insert : NULL;
}
}
initAutorelease();
if (0 == NewAutoreleasePool) { return NULL; }
return NewAutoreleasePool(AutoreleasePool, SELECTOR(new));
}
extern "C" OBJC_PUBLIC void objc_autoreleasePoolPop(void *pool)
{
if (useARCAutoreleasePool)
{
struct arc_tls* tls = getARCThreadData();
if (NULL != tls)
{
if (NULL != tls->pool)
{
emptyPool(tls, pool);
}
return;
}
}
DeleteAutoreleasePool(static_cast<id>(pool), SELECTOR(release));
struct arc_tls* tls = getARCThreadData();
if (tls && tls->returnRetained)
{
release(tls->returnRetained);
tls->returnRetained = nil;
}
}
extern "C" OBJC_PUBLIC id objc_autorelease(id obj)
{
if (nil != obj)
{
obj = autorelease(obj);
}
return obj;
}
extern "C" OBJC_PUBLIC id objc_autoreleaseReturnValue(id obj)
{
if (!useARCAutoreleasePool)
{
struct arc_tls* tls = getARCThreadData();
if (NULL != tls)
{
objc_autorelease(tls->returnRetained);
tls->returnRetained = obj;
return obj;
}
}
return objc_autorelease(obj);
}
extern "C" OBJC_PUBLIC id objc_retainAutoreleasedReturnValue(id obj)
{
// If the previous object was released with objc_autoreleaseReturnValue()
// just before return, then it will not have actually been autoreleased.
// Instead, it will have been stored in TLS. We just remove it from TLS
// and undo the fake autorelease.
//
// If the object was not returned with objc_autoreleaseReturnValue() then
// we actually autorelease the fake object. and then retain the argument.
// In tis case, this is equivalent to objc_retain().
struct arc_tls* tls = getARCThreadData();
if (NULL != tls)
{
// If we're using our own autorelease pool, just pop the object from the top
if (useARCAutoreleasePool)
{
if ((NULL != tls->pool) &&
(*(tls->pool->insert-1) == obj))
{
tls->pool->insert--;
return obj;
}
}
else if (obj == tls->returnRetained)
{
tls->returnRetained = NULL;
return obj;
}
}
return objc_retain(obj);
}
extern "C" OBJC_PUBLIC id objc_retain(id obj)
{
if (nil == obj) { return nil; }
return retain(obj, NO);
}
extern "C" OBJC_PUBLIC id objc_retainAutorelease(id obj)
{
return objc_autorelease(objc_retain(obj));
}
extern "C" OBJC_PUBLIC id objc_retainAutoreleaseReturnValue(id obj)
{
if (nil == obj) { return obj; }
return objc_autoreleaseReturnValue(retain(obj, NO));
}
extern "C" OBJC_PUBLIC id objc_retainBlock(id b)
{
return static_cast<id>(_Block_copy(b));
}
extern "C" OBJC_PUBLIC void objc_release(id obj)
{
if (nil == obj) { return; }
release(obj);
}
extern "C" OBJC_PUBLIC id objc_storeStrong(id *addr, id value)
{
value = objc_retain(value);
id oldValue = *addr;
*addr = value;
objc_release(oldValue);
return value;
}
////////////////////////////////////////////////////////////////////////////////
// Weak references
////////////////////////////////////////////////////////////////////////////////
static int weakref_class;
namespace {
struct WeakRef
{
void *isa = &weakref_class;
id obj = nullptr;
size_t weak_count = 1;
WeakRef(id o) : obj(o) {}
};
template<typename T>
struct malloc_allocator
{
typedef T value_type;
T* allocate(std::size_t n)
{
return static_cast<T*>(malloc(sizeof(T) * n));
}
void deallocate(T* p, std::size_t)
{
free(p);
}
template<typename X>
malloc_allocator &operator=(const malloc_allocator<X>&) const
{
return *this;
}
bool operator==(const malloc_allocator &) const
{
return true;
}
template<typename X>
operator malloc_allocator<X>() const
{
return malloc_allocator<X>();
}
};
using weak_ref_table = tsl::robin_pg_map<const void*,
WeakRef*,
std::hash<const void*>,
std::equal_to<const void*>,
malloc_allocator<std::pair<const void*, WeakRef*>>>;
weak_ref_table &weakRefs()
{
static weak_ref_table w{128};
return w;
}
mutex_t weakRefLock;
}
#ifdef HAVE_BLOCK_USE_RR2
static const struct Block_callbacks_RR blocks_runtime_callbacks = {
sizeof(Block_callbacks_RR),
(void (*)(const void*))objc_retain,
(void (*)(const void*))objc_release,
(void (*)(const void*))objc_delete_weak_refs
};
#endif
PRIVATE extern "C" void init_arc(void)
{
INIT_LOCK(weakRefLock);
#ifdef arc_tls_store
ARCThreadKey = arc_tls_key_create((arc_cleanup_function_t)cleanupPools);
#endif
#ifdef HAVE_BLOCK_USE_RR2
_Block_use_RR2(&blocks_runtime_callbacks);
#endif
}
/**
* Load from a weak pointer and return whether this really was a weak
* reference or a strong (not deallocatable) object in a weak pointer. The
* object will be stored in `obj` and the weak reference in `ref`, if one
* exists.
*/
__attribute__((always_inline))
static BOOL loadWeakPointer(id *addr, id *obj, WeakRef **ref)
{
id oldObj = *addr;
if (oldObj == nil)
{
*ref = NULL;
*obj = nil;
return NO;
}
if (classForObject(oldObj) == (Class)&weakref_class)
{
*ref = (WeakRef*)oldObj;
*obj = (*ref)->obj;
return YES;
}
*ref = NULL;
*obj = oldObj;
return NO;
}
__attribute__((always_inline))
static inline BOOL weakRefRelease(WeakRef *ref)
{
ref->weak_count--;
if (ref->weak_count == 0)
{
weakRefs().erase(ref->obj);
delete ref;
return YES;
}
return NO;
}
extern "C" void* block_load_weak(void *block);
static BOOL setObjectHasWeakRefs(id obj)
{
BOOL isGlobalObject = isPersistentObject(obj);
Class cls = isGlobalObject ? Nil : obj->isa;
if (obj && cls && objc_test_class_flag(cls, objc_class_flag_fast_arc))
{
uintptr_t *refCount = ((uintptr_t*)obj) - 1;
if (obj)
{
uintptr_t refCountVal = __sync_fetch_and_add(refCount, 0);
uintptr_t newVal = refCountVal;
do {
refCountVal = newVal;
size_t realCount = refCountVal & refcount_mask;
// If this object has already been deallocated (or is in the
// process of being deallocated) then don't bother storing it.
if (realCount == refcount_mask)
{
obj = nil;
cls = Nil;
break;
}
// The weak ref flag is monotonic (it is set, never cleared) so
// don't bother trying to re-set it.
if ((refCountVal & weak_mask) == weak_mask)
{
break;
}
// Set the flag in the reference count to indicate that a weak
// reference has been taken.
//
// We currently hold the weak ref lock, so another thread
// racing to deallocate this object will have to wait to do so
// if we manage to do the reference count update first. This
// shouldn't be possible, because `obj` should be a strong
// reference and so it shouldn't be possible to deallocate it
// while we're assigning it.
uintptr_t updated = ((uintptr_t)realCount | weak_mask);
newVal = __sync_val_compare_and_swap(refCount, refCountVal, updated);
} while (newVal != refCountVal);
}
}
return isGlobalObject;
}
WeakRef *incrementWeakRefCount(id obj)
{
WeakRef *&ref = weakRefs()[obj];
if (ref == nullptr)
{
ref = new WeakRef(obj);
}
else
{
assert(ref->obj == obj);
ref->weak_count++;
}
return ref;
}
extern "C" OBJC_PUBLIC id objc_storeWeak(id *addr, id obj)
{
LOCK_FOR_SCOPE(&weakRefLock);
WeakRef *oldRef;
id old;
loadWeakPointer(addr, &old, &oldRef);
// If the old and new values are the same, then we don't need to do anything.
if (old == obj)
{
return obj;
}
BOOL isGlobalObject = setObjectHasWeakRefs(obj);
// If we old ref exists, decrement its reference count. This may also
// delete the weak reference control block.
if (oldRef != NULL)
{
weakRefRelease(oldRef);
}
// If we're storing nil, then just write a null pointer.
if (nil == obj)
{
*addr = obj;
return nil;
}
if (isGlobalObject)
{
// If this is a global object, it's never deallocated, so secretly make
// this a strong reference.
*addr = obj;
return obj;
}
Class cls = classForObject(obj);
if (UNLIKELY(objc_test_class_flag(cls, objc_class_flag_is_block)))
{
// Check whether the block is being deallocated and return nil if so
if (_Block_isDeallocating(obj)) {
*addr = nil;
return nil;
}
}
else if (object_getRetainCount_np(obj) == 0)
{
// If the object is being deallocated return nil.
*addr = nil;
return nil;
}
if (nil != obj)
{
*addr = (id)incrementWeakRefCount(obj);
}
return obj;
}
extern "C" OBJC_PUBLIC BOOL objc_delete_weak_refs(id obj)
{
LOCK_FOR_SCOPE(&weakRefLock);
if (objc_test_class_flag(classForObject(obj), objc_class_flag_fast_arc))
{
// Don't proceed if the object isn't deallocating.
uintptr_t *refCount = ((uintptr_t*)obj) - 1;
uintptr_t refCountVal = __sync_fetch_and_add(refCount, 0);
size_t realCount = refCountVal & refcount_mask;
if (realCount != refcount_mask)
{
return NO;
}
}
auto &table = weakRefs();
auto old = table.find(obj);
if (old != table.end())
{
WeakRef *oldRef = old->second;
// The address of obj is likely to be reused, so remove it from
// the table so that we don't accidentally alias weak
// references
table.erase(old);
// Zero the object pointer. This prevents any other weak
// accesses from loading from this. This must be done after
// removing the ref from the table, because the compare operation
// tests the obj field.
oldRef->obj = nil;
// If the weak reference count is zero, then we should have
// already removed this.
assert(oldRef->weak_count > 0);
}
return YES;
}
extern "C" OBJC_PUBLIC id objc_loadWeakRetained(id* addr)
{
LOCK_FOR_SCOPE(&weakRefLock);
id obj;
WeakRef *ref;
// If this is really a strong reference (nil, or an non-deallocatable
// object), just return it.
if (!loadWeakPointer(addr, &obj, &ref))
{
return obj;
}
// The object cannot be deallocated while we hold the lock (release
// will acquire the lock before attempting to deallocate)
if (obj == nil)
{
// If the object is destroyed, drop this reference to the WeakRef
// struct.
if (ref != NULL)
{
weakRefRelease(ref);
*addr = nil;
}
return nil;
}
Class cls = classForObject(obj);
if (objc_test_class_flag(cls, objc_class_flag_permanent_instances))
{
return obj;
}
else if (UNLIKELY(objc_test_class_flag(cls, objc_class_flag_is_block)))
{
obj = static_cast<id>(block_load_weak(obj));
if (obj == nil)
{
return nil;
}
// This is a defeasible retain operation that protects against another thread concurrently
// starting to deallocate the block.
if (_Block_tryRetain(obj))
{
return obj;
}
return nil;
}
else if (!objc_test_class_flag(cls, objc_class_flag_fast_arc))
{
obj = _objc_weak_load(obj);
}
// _objc_weak_load() can return nil
if (obj == nil) { return nil; }
return retain(obj, YES);
}
extern "C" OBJC_PUBLIC id objc_loadWeak(id* object)
{
return objc_autorelease(objc_loadWeakRetained(object));
}
extern "C" OBJC_PUBLIC void objc_copyWeak(id *dest, id *src)
{
// Don't retain or release.
// `src` is a valid pointer to a __weak pointer or nil.
// `dest` is a valid pointer to uninitialised memory.
// After this operation, `dest` should contain whatever `src` contained.
LOCK_FOR_SCOPE(&weakRefLock);
id obj;
WeakRef *srcRef;
loadWeakPointer(src, &obj, &srcRef);
*dest = *src;
if (srcRef)
{
srcRef->weak_count++;
}
}
extern "C" OBJC_PUBLIC void objc_moveWeak(id *dest, id *src)
{