diff --git a/LangChain Cookbook Part 1 - Fundamentals.ipynb b/LangChain Cookbook Part 1 - Fundamentals.ipynb index 0467f4b..8df35a5 100644 --- a/LangChain Cookbook Part 1 - Fundamentals.ipynb +++ b/LangChain Cookbook Part 1 - Fundamentals.ipynb @@ -1573,7 +1573,7 @@ "\n", "The language model that drives decision making.\n", "\n", - "More specifically, an agent takes in an input and returns a response corresponding to an action to take along with an action input. You can see different types of agents (which are better for different use cases) [here](https://python.langchain.com/en/latest/modules/agents/agents/agent_types.html)." + "More specifically, an agent takes in an input and returns a response corresponding to an action to take along with an action input. You can see different types of agents (which are better for different use cases) [here](https://python.langchain.com/en/latest/modules/agents/agent_types.html)." ] }, { diff --git a/README.md b/README.md index 54671cb..955be33 100644 --- a/README.md +++ b/README.md @@ -31,6 +31,7 @@ Prompt Engineering (my favorite resources): | Project | Contact | Difficulty | Open Sourced? | Notes | | - | ----------- | ---------- | :-: | ---------- | | [SummarizePaper.com](https://www.summarizepaper.com/) | Quentin Kral | 🐒 Intermediate | ✅ [Code](https://github.com/summarizepaper/summarizepaper) | Summarize arXiv papers | +| SlackSummarizerPlugin | Matias Sandacz | 🐒 Intermediate | ✅ [Code](https://github.com/matisandacz/SlackSummarization) | Summarize Slack Conversations |
@@ -101,4 +102,4 @@ As an open-source project in a rapidly developing field, we are extremely open t Submit a PR with notes. -This repo and series is provided by [DataIndependent](https://dataindependent.com/) and run by [Greg Kamradt](https://twitter.com/GregKamradt) \ No newline at end of file +This repo and series is provided by [DataIndependent](https://dataindependent.com/) and run by [Greg Kamradt](https://twitter.com/GregKamradt) diff --git a/data_generation/Expert Structured Output (Using Kor).ipynb b/data_generation/Expert Structured Output (Using Kor).ipynb index 9ae29fa..7a5bb37 100644 --- a/data_generation/Expert Structured Output (Using Kor).ipynb +++ b/data_generation/Expert Structured Output (Using Kor).ipynb @@ -187,7 +187,7 @@ " My sister's name is Rachel.\n", " My brother's name Joe. My dog's name is Spot\n", "\"\"\"\n", - "output = chain.predict_and_parse(text=(text))[\"data\"]\n", + "output = chain.run(text=(text))[\"data\"]\n", "\n", "printOutput(output)\n", "# Notice how there isn't \"spot\" in the results list because it's the name of a dog, not a person." @@ -218,7 +218,7 @@ } ], "source": [ - "output = chain.predict_and_parse(text=(\"The dog went to the park\"))[\"data\"]\n", + "output = chain.run(text=(\"The dog went to the park\"))[\"data\"]\n", "printOutput(output)" ] }, @@ -300,7 +300,7 @@ "text=\"Palm trees are brown with a 6 rating. Sequoia trees are green\"\n", "\n", "chain = create_extraction_chain(llm, plant_schema)\n", - "output = chain.predict_and_parse(text=text)['data']\n", + "output = chain.run(text=text)['data']\n", "\n", "printOutput(output)" ] @@ -402,7 +402,7 @@ "\n", "# Changed the encoder to json\n", "chain = create_extraction_chain(llm, cars_schema, encoder_or_encoder_class=\"json\")\n", - "output = chain.predict_and_parse(text=text)['data']\n", + "output = chain.run(text=text)['data']\n", "\n", "printOutput(output)" ] @@ -529,7 +529,7 @@ ], "source": [ "chain = create_extraction_chain(llm, schema, encoder_or_encoder_class='json')\n", - "output = chain.predict_and_parse(text=\"please add 15 more units sold to 2023\")['data']\n", + "output = chain.run(text=\"please add 15 more units sold to 2023\")['data']\n", "\n", "printOutput(output)" ] @@ -891,7 +891,7 @@ } ], "source": [ - "output = chain.predict_and_parse(text=text)[\"data\"]\n", + "output = chain.run(text=text)[\"data\"]\n", "\n", "printOutput(output)" ] @@ -1027,7 +1027,7 @@ ], "source": [ "chain = create_extraction_chain(llm, salary_range)\n", - "output = chain.predict_and_parse(text=text)[\"data\"]\n", + "output = chain.run(text=text)[\"data\"]\n", "\n", "printOutput(output)" ] @@ -1070,7 +1070,7 @@ ], "source": [ "with get_openai_callback() as cb:\n", - " result = chain.predict_and_parse(text=text)\n", + " result = chain.run(text=text)\n", " print(f\"Total Tokens: {cb.total_tokens}\")\n", " print(f\"Prompt Tokens: {cb.prompt_tokens}\")\n", " print(f\"Completion Tokens: {cb.completion_tokens}\")\n",