Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add finetuned METL-Local and METL-Global target models #8

Open
agitter opened this issue Aug 25, 2024 · 10 comments
Open

Add finetuned METL-Local and METL-Global target models #8

agitter opened this issue Aug 25, 2024 · 10 comments

Comments

@agitter
Copy link
Member

agitter commented Aug 25, 2024

We will add these additional models to Zenodo

@agitter
Copy link
Member Author

agitter commented Aug 25, 2024

I wrote a short bash script to convert all the checkpoints for Zenodo using the code and environment at commit 45237bb of the METL repo.

#!/bin/bash
for f in finetuned_model_checkpoints/*/checkpoints/epoch*.ckpt; do
    python code/convert_ckpt.py --ckpt_path $f --output_dir models/
done

Script output

$ ./convert_checkpoints.sh
Processing checkpoint: finetuned_model_checkpoints/4Rh3WCbG/checkpoints/epoch=302-step=13635.ckpt
Saving converted checkpoint to: models/4Rh3WCbG.pt
Processing checkpoint: finetuned_model_checkpoints/4xbuC5y7/checkpoints/epoch=359-step=19080.ckpt
Saving converted checkpoint to: models/4xbuC5y7.pt
Processing checkpoint: finetuned_model_checkpoints/5SjoLx3y/checkpoints/epoch=275-step=65964.ckpt
Saving converted checkpoint to: models/5SjoLx3y.pt
Processing checkpoint: finetuned_model_checkpoints/64ncFxBR/checkpoints/epoch=415-step=32864.ckpt
Saving converted checkpoint to: models/64ncFxBR.pt
Processing checkpoint: finetuned_model_checkpoints/6JBzHpkQ/checkpoints/epoch=467-step=153504.ckpt
Saving converted checkpoint to: models/6JBzHpkQ.pt
Processing checkpoint: finetuned_model_checkpoints/9vSB3DRM/checkpoints/epoch=301-step=1024686.ckpt
Saving converted checkpoint to: models/9vSB3DRM.pt
Processing checkpoint: finetuned_model_checkpoints/BAWw23vW/checkpoints/epoch=283-step=159040.ckpt
Saving converted checkpoint to: models/BAWw23vW.pt
Processing checkpoint: finetuned_model_checkpoints/BuvxgE2x/checkpoints/epoch=340-step=18073.ckpt
Saving converted checkpoint to: models/BuvxgE2x.pt
Processing checkpoint: finetuned_model_checkpoints/ELL4GGQq/checkpoints/epoch=415-step=32864.ckpt
Saving converted checkpoint to: models/ELL4GGQq.pt
Processing checkpoint: finetuned_model_checkpoints/G9piq6WH/checkpoints/epoch=284-step=159600.ckpt
Saving converted checkpoint to: models/G9piq6WH.pt
Processing checkpoint: finetuned_model_checkpoints/HaUuRwfE/checkpoints/epoch=277-step=91184.ckpt
Saving converted checkpoint to: models/HaUuRwfE.pt
Processing checkpoint: finetuned_model_checkpoints/HenDpDWe/checkpoints/epoch=309-step=124310.ckpt
Saving converted checkpoint to: models/HenDpDWe.pt
Processing checkpoint: finetuned_model_checkpoints/K6BjsWXm/checkpoints/epoch=419-step=33180.ckpt
Saving converted checkpoint to: models/K6BjsWXm.pt
Processing checkpoint: finetuned_model_checkpoints/LWEY95Yb/checkpoints/epoch=327-step=107584.ckpt
Saving converted checkpoint to: models/LWEY95Yb.pt
Processing checkpoint: finetuned_model_checkpoints/NfbZL7jK/checkpoints/epoch=266-step=149520.ckpt
Saving converted checkpoint to: models/NfbZL7jK.pt
Processing checkpoint: finetuned_model_checkpoints/PeT2D92j/checkpoints/epoch=334-step=109880.ckpt
Saving converted checkpoint to: models/PeT2D92j.pt
Processing checkpoint: finetuned_model_checkpoints/Pgcseywk/checkpoints/epoch=276-step=939861.ckpt
Saving converted checkpoint to: models/Pgcseywk.pt
Processing checkpoint: finetuned_model_checkpoints/PncvgiJU/checkpoints/epoch=401-step=31758.ckpt
Saving converted checkpoint to: models/PncvgiJU.pt
Processing checkpoint: finetuned_model_checkpoints/PqBMjXkA/checkpoints/epoch=270-step=108671.ckpt
Saving converted checkpoint to: models/PqBMjXkA.pt
Processing checkpoint: finetuned_model_checkpoints/RBtqxzvu/checkpoints/epoch=303-step=13680.ckpt
Saving converted checkpoint to: models/RBtqxzvu.pt
Processing checkpoint: finetuned_model_checkpoints/RMFA6dnX/checkpoints/epoch=276-step=12465.ckpt
Saving converted checkpoint to: models/RMFA6dnX.pt
Processing checkpoint: finetuned_model_checkpoints/TdjCzoQQ/checkpoints/epoch=280-step=67159.ckpt
Saving converted checkpoint to: models/TdjCzoQQ.pt
Processing checkpoint: finetuned_model_checkpoints/UvMMdsq4/checkpoints/epoch=286-step=973791.ckpt
Saving converted checkpoint to: models/UvMMdsq4.pt
Processing checkpoint: finetuned_model_checkpoints/V3uTtXVe/checkpoints/epoch=282-step=12735.ckpt
Saving converted checkpoint to: models/V3uTtXVe.pt
Processing checkpoint: finetuned_model_checkpoints/VNpi9Zjt/checkpoints/epoch=277-step=111478.ckpt
Saving converted checkpoint to: models/VNpi9Zjt.pt
Processing checkpoint: finetuned_model_checkpoints/VwcRN6UB/checkpoints/epoch=278-step=59148.ckpt
Saving converted checkpoint to: models/VwcRN6UB.pt
Processing checkpoint: finetuned_model_checkpoints/YdzBYWHs/checkpoints/epoch=306-step=16271.ckpt
Saving converted checkpoint to: models/YdzBYWHs.pt
Processing checkpoint: finetuned_model_checkpoints/Z59BhUaE/checkpoints/epoch=279-step=59360.ckpt
Saving converted checkpoint to: models/Z59BhUaE.pt
Processing checkpoint: finetuned_model_checkpoints/cvnycE5Q/checkpoints/epoch=312-step=66356.ckpt
Saving converted checkpoint to: models/cvnycE5Q.pt
Processing checkpoint: finetuned_model_checkpoints/dAndZfJ4/checkpoints/epoch=283-step=963612.ckpt
Saving converted checkpoint to: models/dAndZfJ4.pt
Processing checkpoint: finetuned_model_checkpoints/dDoCCvfr/checkpoints/epoch=307-step=123508.ckpt
Saving converted checkpoint to: models/dDoCCvfr.pt
Processing checkpoint: finetuned_model_checkpoints/e9uhhnAv/checkpoints/epoch=264-step=148400.ckpt
Saving converted checkpoint to: models/e9uhhnAv.pt
Processing checkpoint: finetuned_model_checkpoints/ho54gxzv/checkpoints/epoch=303-step=72656.ckpt
Saving converted checkpoint to: models/ho54gxzv.pt
Processing checkpoint: finetuned_model_checkpoints/iu6ZahPw/checkpoints/epoch=294-step=15635.ckpt
Saving converted checkpoint to: models/iu6ZahPw.pt
Processing checkpoint: finetuned_model_checkpoints/jYesS9Ki/checkpoints/epoch=309-step=65720.ckpt
Saving converted checkpoint to: models/jYesS9Ki.pt
Processing checkpoint: finetuned_model_checkpoints/jhbL2FeB/checkpoints/epoch=285-step=68354.ckpt
Saving converted checkpoint to: models/jhbL2FeB.pt

Sam selected those checkpoints from the epoch with the lowest validation loss.

We'll use the attached index.csv to update the readme.

@John-Peters-UW
Copy link
Collaborator

mv ./models/PeT2D92j ./models/METL_G_20M_1D_avgfp
mv ./models/6JBzHpkQ ./models/METL_G_20M_3D_avgfp
mv ./models/HaUuRwfE ./models/METL_L_1D_avgfp
mv ./models/LWEY95Yb ./models/METL_L_3D_avgfp
mv ./models/4Rh3WCbG ./models/METL_G_20M_1D_dlg4-2022-abundance
mv ./models/RBtqxzvu ./models/METL_G_20M_3D_dlg4-2022-abundance
mv ./models/RMFA6dnX ./models/METL_L_1D_dlg4-2022-abundance
mv ./models/V3uTtXVe ./models/METL_L_3D_dlg4-2022-abundance
mv ./models/4xbuC5y7 ./models/METL_G_20M_1D_dlg4-2022-binding
mv ./models/BuvxgE2x ./models/METL_G_20M_3D_dlg4-2022-binding
mv ./models/YdzBYWHs ./models/METL_L_1D_dlg4-2022-binding
mv ./models/iu6ZahPw ./models/METL_L_3D_dlg4-2022-binding
mv ./models/dAndZfJ4 ./models/METL_G_20M_1D_gb1
mv ./models/9vSB3DRM ./models/METL_G_20M_3D_gb1
mv ./models/Pgcseywk ./models/METL_L_1D_gb1
mv ./models/UvMMdsq4 ./models/METL_L_3D_gb1
mv ./models/HenDpDWe ./models/METL_G_20M_1D_grb2-abundance
mv ./models/dDoCCvfr ./models/METL_G_20M_3D_grb2-abundance
mv ./models/VNpi9Zjt ./models/METL_L_1D_grb2-abundance
mv ./models/PqBMjXkA ./models/METL_L_3D_grb2-abundance
mv ./models/cvnycE5Q ./models/METL_G_20M_1D_grb2-binding
mv ./models/jYesS9Ki ./models/METL_G_20M_3D_grb2-binding
mv ./models/Z59BhUaE ./models/METL_L_1D_grb2-binding
mv ./models/VwcRN6UB ./models/METL_L_3D_grb2-binding
mv ./models/ho54gxzv ./models/METL_G_20M_1D_pab1
mv ./models/jhbL2FeB ./models/METL_G_20M_3D_pab1
mv ./models/TdjCzoQQ ./models/METL_L_1D_pab1
mv ./models/5SjoLx3y ./models/METL_L_3D_pab1
mv ./models/ELL4GGQq ./models/METL_G_20M_1D_tem-1
mv ./models/K6BjsWXm ./models/METL_G_20M_3D_tem-1
mv ./models/64ncFxBR ./models/METL_L_1D_tem-1
mv ./models/PncvgiJU ./models/METL_L_3D_tem-1
mv ./models/BAWw23vW ./models/METL_G_20M_1D_ube4b
mv ./models/G9piq6WH ./models/METL_G_20M_3D_ube4b
mv ./models/e9uhhnAv ./models/METL_L_1D_ube4b
mv ./models/NfbZL7jK ./models/METL_L_3D_ube4b

@John-Peters-UW
Copy link
Collaborator

John-Peters-UW commented Aug 26, 2024

no promises that it's correct. I don't know when to use the syntax here

vs here

But for most of the models it looks correct

Script:

import os
import polars as pl

index = pl.read_csv('./index.csv', separator=',')
#index.head()

for row in index.rows(named=True):
   uuid:str = row['uuid']
   plt_name:str = row['plot_name']
   ds_name:str = row['ds_name']
   new_name = plt_name.upper()
   new_name = new_name.replace('GLOBAL', 'G')
   new_name = new_name.replace('LOCAL', 'L')
   tail_idx = new_name.index('D_')
   new_name = new_name[:tail_idx+1]
   new_name = new_name + f'_{ds_name}'
   print(f'mv ./models/{uuid} ./models/{new_name}')

@John-Peters-UW
Copy link
Collaborator

Actually not sure when to caps the ending for these either. It's inconsistent in the tables in metl-pretrained so it's just whatever the ds_name is for the ones I printed. I think GB1 needs all cap but Pab1 doesn't and it's confusing

@agitter
Copy link
Member Author

agitter commented Aug 26, 2024

This looks great. We may need to modify the final line in the Python script to

print(f'mv ./models/{uuid}.pt ./models/{new_name}-{uuid}.pt')

Actually not sure when to caps the ending for these either.

That mostly comes from how the proteins and domains are referred to in literature, so it isn't entirely consistent.

@samgelman
Copy link
Collaborator

For model filenames, I suggest prefixing the name with FT to signify finetuned, followed by the ident of the base METL model, followed by the UUID. For instance: FT-METL-L-2M-1D-GFP-HaUuRwfE.pt and FT-METL-G-20M-3D-6JBzHpkQ.pt.

@John-Peters-UW
Copy link
Collaborator

mv ./models/PeT2D92j ./models/FT-METL-G-20M-1D-avGFP-PeT2D92j.pt
mv ./models/6JBzHpkQ ./models/FT-METL-G-20M-3D-avGFP-6JBzHpkQ.pt
mv ./models/HaUuRwfE ./models/FT-METL-L-1D-avGFP-HaUuRwfE.pt
mv ./models/LWEY95Yb ./models/FT-METL-L-3D-avGFP-LWEY95Yb.pt
mv ./models/4Rh3WCbG ./models/FT-METL-G-20M-1D-dlg4-2022-abundance-4Rh3WCbG.pt
mv ./models/RBtqxzvu ./models/FT-METL-G-20M-3D-dlg4-2022-abundance-RBtqxzvu.pt
mv ./models/RMFA6dnX ./models/FT-METL-L-1D-dlg4-2022-abundance-RMFA6dnX.pt
mv ./models/V3uTtXVe ./models/FT-METL-L-3D-dlg4-2022-abundance-V3uTtXVe.pt
mv ./models/4xbuC5y7 ./models/FT-METL-G-20M-1D-dlg4-2022-binding-4xbuC5y7.pt
mv ./models/BuvxgE2x ./models/FT-METL-G-20M-3D-dlg4-2022-binding-BuvxgE2x.pt
mv ./models/YdzBYWHs ./models/FT-METL-L-1D-dlg4-2022-binding-YdzBYWHs.pt
mv ./models/iu6ZahPw ./models/FT-METL-L-3D-dlg4-2022-binding-iu6ZahPw.pt
mv ./models/dAndZfJ4 ./models/FT-METL-G-20M-1D-GB1-dAndZfJ4.pt
mv ./models/9vSB3DRM ./models/FT-METL-G-20M-3D-GB1-9vSB3DRM.pt
mv ./models/Pgcseywk ./models/FT-METL-L-1D-GB1-Pgcseywk.pt
mv ./models/UvMMdsq4 ./models/FT-METL-L-3D-GB1-UvMMdsq4.pt
mv ./models/HenDpDWe ./models/FT-METL-G-20M-1D-Grb2-abundance-HenDpDWe.pt
mv ./models/dDoCCvfr ./models/FT-METL-G-20M-3D-Grb2-abundance-dDoCCvfr.pt
mv ./models/VNpi9Zjt ./models/FT-METL-L-1D-Grb2-abundance-VNpi9Zjt.pt
mv ./models/PqBMjXkA ./models/FT-METL-L-3D-Grb2-abundance-PqBMjXkA.pt
mv ./models/cvnycE5Q ./models/FT-METL-G-20M-1D-Grb2-binding-cvnycE5Q.pt
mv ./models/jYesS9Ki ./models/FT-METL-G-20M-3D-Grb2-binding-jYesS9Ki.pt
mv ./models/Z59BhUaE ./models/FT-METL-L-1D-Grb2-binding-Z59BhUaE.pt
mv ./models/VwcRN6UB ./models/FT-METL-L-3D-Grb2-binding-VwcRN6UB.pt
mv ./models/ho54gxzv ./models/FT-METL-G-20M-1D-pab1-ho54gxzv.pt
mv ./models/jhbL2FeB ./models/FT-METL-G-20M-3D-pab1-jhbL2FeB.pt
mv ./models/TdjCzoQQ ./models/FT-METL-L-1D-pab1-TdjCzoQQ.pt
mv ./models/5SjoLx3y ./models/FT-METL-L-3D-pab1-5SjoLx3y.pt
mv ./models/ELL4GGQq ./models/FT-METL-G-20M-1D-TEM-1-ELL4GGQq.pt
mv ./models/K6BjsWXm ./models/FT-METL-G-20M-3D-TEM-1-K6BjsWXm.pt
mv ./models/64ncFxBR ./models/FT-METL-L-1D-TEM-1-64ncFxBR.pt
mv ./models/PncvgiJU ./models/FT-METL-L-3D-TEM-1-PncvgiJU.pt
mv ./models/BAWw23vW ./models/FT-METL-G-20M-1D-UBE4B-BAWw23vW.pt
mv ./models/G9piq6WH ./models/FT-METL-G-20M-3D-UBE4B-G9piq6WH.pt
mv ./models/e9uhhnAv ./models/FT-METL-L-1D-UBE4B-e9uhhnAv.pt
mv ./models/NfbZL7jK ./models/FT-METL-L-3D-UBE4B-NfbZL7jK.pt
for row in index.rows(named=True):
    uuid:str = row['uuid']
    plt_name:str = row['plot_name']
    ds_name:str = row['ds_name']

    new_name = plt_name.upper()
    new_name = new_name.replace('GLOBAL', 'G')
    new_name = new_name.replace('LOCAL', 'L')
    tail_idx = new_name.index('D_')
    new_name = new_name[:tail_idx+1]
    new_name = new_name + f'_{ds_name}'
    new_name = new_name.replace('_', '-')
    new_name = new_name.replace('gb1', 'GB1')
    new_name = new_name.replace('avgfp', 'avGFP')
    new_name = new_name.replace('DLG4', 'DLG4')
    new_name = new_name.replace('gb1', 'GB1')
    new_name = new_name.replace('grb2', 'Grb2')
    new_name = new_name.replace('tem', 'TEM')
    new_name = new_name.replace('ube4b', 'UBE4B')

    print(f'mv ./models/{uuid} ./models/FT-{new_name}-{uuid}.pt')

@agitter
Copy link
Member Author

agitter commented Aug 27, 2024

Thanks for working this out. The script above was missing the .pt from the original model names so I used string replace to update it.

#!/bin/bash
mv ./models/PeT2D92j.pt ./models/FT-METL-G-20M-1D-avGFP-PeT2D92j.pt
mv ./models/6JBzHpkQ.pt ./models/FT-METL-G-20M-3D-avGFP-6JBzHpkQ.pt
mv ./models/HaUuRwfE.pt ./models/FT-METL-L-1D-avGFP-HaUuRwfE.pt
mv ./models/LWEY95Yb.pt ./models/FT-METL-L-3D-avGFP-LWEY95Yb.pt
mv ./models/4Rh3WCbG.pt ./models/FT-METL-G-20M-1D-dlg4-2022-abundance-4Rh3WCbG.pt
mv ./models/RBtqxzvu.pt ./models/FT-METL-G-20M-3D-dlg4-2022-abundance-RBtqxzvu.pt
mv ./models/RMFA6dnX.pt ./models/FT-METL-L-1D-dlg4-2022-abundance-RMFA6dnX.pt
mv ./models/V3uTtXVe.pt ./models/FT-METL-L-3D-dlg4-2022-abundance-V3uTtXVe.pt
mv ./models/4xbuC5y7.pt ./models/FT-METL-G-20M-1D-dlg4-2022-binding-4xbuC5y7.pt
mv ./models/BuvxgE2x.pt ./models/FT-METL-G-20M-3D-dlg4-2022-binding-BuvxgE2x.pt
mv ./models/YdzBYWHs.pt ./models/FT-METL-L-1D-dlg4-2022-binding-YdzBYWHs.pt
mv ./models/iu6ZahPw.pt ./models/FT-METL-L-3D-dlg4-2022-binding-iu6ZahPw.pt
mv ./models/dAndZfJ4.pt ./models/FT-METL-G-20M-1D-GB1-dAndZfJ4.pt
mv ./models/9vSB3DRM.pt ./models/FT-METL-G-20M-3D-GB1-9vSB3DRM.pt
mv ./models/Pgcseywk.pt ./models/FT-METL-L-1D-GB1-Pgcseywk.pt
mv ./models/UvMMdsq4.pt ./models/FT-METL-L-3D-GB1-UvMMdsq4.pt
mv ./models/HenDpDWe.pt ./models/FT-METL-G-20M-1D-Grb2-abundance-HenDpDWe.pt
mv ./models/dDoCCvfr.pt ./models/FT-METL-G-20M-3D-Grb2-abundance-dDoCCvfr.pt
mv ./models/VNpi9Zjt.pt ./models/FT-METL-L-1D-Grb2-abundance-VNpi9Zjt.pt
mv ./models/PqBMjXkA.pt ./models/FT-METL-L-3D-Grb2-abundance-PqBMjXkA.pt
mv ./models/cvnycE5Q.pt ./models/FT-METL-G-20M-1D-Grb2-binding-cvnycE5Q.pt
mv ./models/jYesS9Ki.pt ./models/FT-METL-G-20M-3D-Grb2-binding-jYesS9Ki.pt
mv ./models/Z59BhUaE.pt ./models/FT-METL-L-1D-Grb2-binding-Z59BhUaE.pt
mv ./models/VwcRN6UB.pt ./models/FT-METL-L-3D-Grb2-binding-VwcRN6UB.pt
mv ./models/ho54gxzv.pt ./models/FT-METL-G-20M-1D-pab1-ho54gxzv.pt
mv ./models/jhbL2FeB.pt ./models/FT-METL-G-20M-3D-pab1-jhbL2FeB.pt
mv ./models/TdjCzoQQ.pt ./models/FT-METL-L-1D-pab1-TdjCzoQQ.pt
mv ./models/5SjoLx3y.pt ./models/FT-METL-L-3D-pab1-5SjoLx3y.pt
mv ./models/ELL4GGQq.pt ./models/FT-METL-G-20M-1D-TEM-1-ELL4GGQq.pt
mv ./models/K6BjsWXm.pt ./models/FT-METL-G-20M-3D-TEM-1-K6BjsWXm.pt
mv ./models/64ncFxBR.pt ./models/FT-METL-L-1D-TEM-1-64ncFxBR.pt
mv ./models/PncvgiJU.pt ./models/FT-METL-L-3D-TEM-1-PncvgiJU.pt
mv ./models/BAWw23vW.pt ./models/FT-METL-G-20M-1D-UBE4B-BAWw23vW.pt
mv ./models/G9piq6WH.pt ./models/FT-METL-G-20M-3D-UBE4B-G9piq6WH.pt
mv ./models/e9uhhnAv.pt ./models/FT-METL-L-1D-UBE4B-e9uhhnAv.pt
mv ./models/NfbZL7jK.pt ./models/FT-METL-L-3D-UBE4B-NfbZL7jK.pt

Once I started uploading models I noticed some of the names didn't match (avGFP vs. GFP). I used the local source model identifiers as the reference dataset names

METL-L-2M-1D-GFP
METL-L-2M-1D-DLG4_2022
METL-L-2M-1D-GB1
METL-L-2M-1D-GRB2
METL-L-2M-1D-Pab1
METL-L-2M-1D-TEM-1
METL-L-2M-1D-Ube4b

I adjusted those with a second script.

#!/bin/bash
mv ./models/FT-METL-G-20M-1D-avGFP-PeT2D92j.pt ./models/FT-METL-G-20M-1D-GFP-PeT2D92j.pt
mv ./models/FT-METL-G-20M-3D-avGFP-6JBzHpkQ.pt ./models/FT-METL-G-20M-3D-GFP-6JBzHpkQ.pt
mv ./models/FT-METL-L-1D-avGFP-HaUuRwfE.pt ./models/FT-METL-L-1D-GFP-HaUuRwfE.pt
mv ./models/FT-METL-L-3D-avGFP-LWEY95Yb.pt ./models/FT-METL-L-3D-GFP-LWEY95Yb.pt
mv ./models/FT-METL-G-20M-1D-dlg4-2022-abundance-4Rh3WCbG.pt ./models/FT-METL-G-20M-1D-DLG4_2022-ABUNDANCE-4Rh3WCbG.pt
mv ./models/FT-METL-G-20M-3D-dlg4-2022-abundance-RBtqxzvu.pt ./models/FT-METL-G-20M-3D-DLG4_2022-ABUNDANCE-RBtqxzvu.pt
mv ./models/FT-METL-L-1D-dlg4-2022-abundance-RMFA6dnX.pt ./models/FT-METL-L-1D-DLG4_2022-ABUNDANCE-RMFA6dnX.pt
mv ./models/FT-METL-L-3D-dlg4-2022-abundance-V3uTtXVe.pt ./models/FT-METL-L-3D-DLG4_2022-ABUNDANCE-V3uTtXVe.pt
mv ./models/FT-METL-G-20M-1D-dlg4-2022-binding-4xbuC5y7.pt ./models/FT-METL-G-20M-1D-DLG4_2022-BINDING-4xbuC5y7.pt
mv ./models/FT-METL-G-20M-3D-dlg4-2022-binding-BuvxgE2x.pt ./models/FT-METL-G-20M-3D-DLG4_2022-BINDING-BuvxgE2x.pt
mv ./models/FT-METL-L-1D-dlg4-2022-binding-YdzBYWHs.pt ./models/FT-METL-L-1D-DLG4_2022-BINDING-YdzBYWHs.pt
mv ./models/FT-METL-L-3D-dlg4-2022-binding-iu6ZahPw.pt ./models/FT-METL-L-3D-DLG4_2022-BINDING-iu6ZahPw.pt
mv ./models/FT-METL-G-20M-1D-Grb2-abundance-HenDpDWe.pt ./models/FT-METL-G-20M-1D-GRB2-ABUNDANCE-HenDpDWe.pt
mv ./models/FT-METL-G-20M-3D-Grb2-abundance-dDoCCvfr.pt ./models/FT-METL-G-20M-3D-GRB2-ABUNDANCE-dDoCCvfr.pt
mv ./models/FT-METL-L-1D-Grb2-abundance-VNpi9Zjt.pt ./models/FT-METL-L-1D-GRB2-ABUNDANCE-VNpi9Zjt.pt
mv ./models/FT-METL-L-3D-Grb2-abundance-PqBMjXkA.pt ./models/FT-METL-L-3D-GRB2-ABUNDANCE-PqBMjXkA.pt
mv ./models/FT-METL-G-20M-1D-Grb2-binding-cvnycE5Q.pt ./models/FT-METL-G-20M-1D-GRB2-BINDING-cvnycE5Q.pt
mv ./models/FT-METL-G-20M-3D-Grb2-binding-jYesS9Ki.pt ./models/FT-METL-G-20M-3D-GRB2-BINDING-jYesS9Ki.pt
mv ./models/FT-METL-L-1D-Grb2-binding-Z59BhUaE.pt ./models/FT-METL-L-1D-GRB2-BINDING-Z59BhUaE.pt
mv ./models/FT-METL-L-3D-Grb2-binding-VwcRN6UB.pt ./models/FT-METL-L-3D-GRB2-BINDING-VwcRN6UB.pt
mv ./models/FT-METL-G-20M-1D-pab1-ho54gxzv.pt ./models/FT-METL-G-20M-1D-Pab1-ho54gxzv.pt
mv ./models/FT-METL-G-20M-3D-pab1-jhbL2FeB.pt ./models/FT-METL-G-20M-3D-Pab1-jhbL2FeB.pt
mv ./models/FT-METL-L-1D-pab1-TdjCzoQQ.pt ./models/FT-METL-L-1D-Pab1-TdjCzoQQ.pt
mv ./models/FT-METL-L-3D-pab1-5SjoLx3y.pt ./models/FT-METL-L-3D-Pab1-5SjoLx3y.pt
mv ./models/FT-METL-G-20M-1D-UBE4B-BAWw23vW.pt ./models/FT-METL-G-20M-1D-Ube4b-BAWw23vW.pt
mv ./models/FT-METL-G-20M-3D-UBE4B-G9piq6WH.pt ./models/FT-METL-G-20M-3D-Ube4b-G9piq6WH.pt
mv ./models/FT-METL-L-1D-UBE4B-e9uhhnAv.pt ./models/FT-METL-L-1D-Ube4b-e9uhhnAv.pt
mv ./models/FT-METL-L-3D-UBE4B-NfbZL7jK.pt ./models/FT-METL-L-3D-Ube4b-NfbZL7jK.pt

Zenodo has a limit of 100 files per repository and then requires depositors to archive individual files. We're only at 58 files, but that is worth considering if we add many more DMS datasets and target models.

Here is a preview of the Zenodo dataset with the new files. If this looks good, I'll release it.

@samgelman
Copy link
Collaborator

Looks good to me. You can go ahead and release it!

@agitter
Copy link
Member Author

agitter commented Aug 29, 2024

I published version 2.0: https://doi.org/10.5281/zenodo.13377502

I'm leaving this open until we update the readme describing all the new models and the models in main.py. All of the existing Zenodo URLs from version 1.0 like https://zenodo.org/records/11051645/files/METL-G-20M-1D-D72M9aEp.pt?download=1 will still work, but we can also replace the version identify in the URL to https://zenodo.org/records/13377502/files/METL-G-20M-1D-D72M9aEp.pt?download=1 if we want. I copied all version 1.0 files to version 2.0 as well.

Our naming convention isn't very clear about distinguishing the METL-Local GFP models that were training on most of the data versus the low-N models:

FT-METL-L-2M-3D-GFP-PEkeRuxb.pt
FT-METL-L-3D-GFP-LWEY95Yb.pt

so let's be sure that is clear in the readme.

The final step will be updating the model list in the Colab notebook.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants