Skip to content

geometric-intelligence/Superposition

 
 

Repository files navigation

Code for https://arxiv.org/abs/2310.11431

Identifying Interpretable Visual Features in Artificial and Biological Neural Systems

David Klindt, Sophia Sanborn, Francisco Acosta, Frédéric Poitevin, Nina Miolane

Single neurons in neural networks are often interpretable in that they represent individual, intuitively meaningful features. However, many neurons exhibit mixed selectivity, i.e., they represent multiple unrelated features. A recent hypothesis proposes that features in deep networks may be represented in superposition, i.e., on non-orthogonal axes by multiple neurons, since the number of possible interpretable features in natural data is generally larger than the number of neurons in a given network. Accordingly, we should be able to find meaningful directions in activation space that are not aligned with individual neurons. Here, we propose (1) an automated method for quantifying visual interpretability that is validated against a large database of human psychophysics judgments of neuron interpretability, and (2) an approach for finding meaningful directions in network activation space. We leverage these methods to discover directions in convolutional neural networks that are more intuitively meaningful than individual neurons, as we confirm and investigate in a series of analyses. Moreover, we apply the same method to three recent datasets of visual neural responses in the brain and find that our conclusions largely transfer to real neural data, suggesting that superposition might be deployed by the brain. This also provides a link with disentanglement and raises fundamental questions about robust, efficient and factorized representations in both artificial and biological neural systems.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 93.6%
  • Python 6.4%