-
Notifications
You must be signed in to change notification settings - Fork 186
/
jhu_data_daily_cases.R
206 lines (175 loc) · 10.5 KB
/
jhu_data_daily_cases.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
## Covid-2019 interactive mapping tool: script to reformat JHU data from scratch
## Edward Parker and Quentic Leclerc, London School of Hygiene & Tropical Medicine, March 2019
## data extracted from Johns Hopkins data obtained from following Github repository
# https://github.com/CSSEGISandData/COVID-19
# load libraries
if(!require(stringr)) install.packages("stringr", repos = "http://cran.us.r-project.org")
if(!require(stringi)) install.packages("stringi", repos = "http://cran.us.r-project.org")
if(!require(dplyr)) install.packages("dplyr", repos = "http://cran.us.r-project.org")
# function to update jhu input data according to mapping base format
update_jhu = function(input_df, tag) {
names(input_df)[1:2] = c("Province", "Country")
input_df$Country[input_df$Province=="Hong Kong"] = "Hong Kong"
input_df$Country[input_df$Province=="Macau"] = "Macao"
input_df$Country[input_df$Country=="Taiwan*"] = "Taiwan"
input_df$Country[input_df$Country=="Korea, South"] = "RepublicofKorea"
input_df$Country[input_df$Country=="Congo (Brazzaville)" | input_df$Country=="Republic of the Congo"] = "Congo"
input_df$Country[input_df$Country=="Congo (Kinshasa)"] = "Democratic Republic of the Congo"
input_df$Country[input_df$Country=="Cote d'Ivoire"] = "CotedIvoire"
input_df$Country[input_df$Country=="Gambia, The"] = "TheGambia"
input_df$Country[input_df$Country=="Bahamas, The"] = "TheBahamas"
input_df$Country[input_df$Country=="Cabo Verde"] = "CapeVerde"
input_df$Country[input_df$Country=="Timor-Leste"] = "TimorLeste"
input_df$Country[input_df$Country=="Guinea-Bissau"] = "GuineaBissau"
input_df$Country = input_df$Country %>% str_replace_all(., " ", "")
dates = names(input_df)[which(names(input_df)=="1/22/20"):ncol(input_df)]
input_df = input_df %>%
select(-c(Province, Lat, Long)) %>%
group_by(Country) %>%
summarise_each(funs(sum)) %>%
data.frame()
rownames(input_df) = input_df$Country
rownames(input_df) = paste0(input_df$Country,"_",tag)
input_df = input_df %>% select(-c(Country)) %>% t()
input_df = data.frame(input_df)
input_df$Date = dates
rownames(input_df) = 1:nrow(input_df)
input_df$Date = format(as.Date(input_df$Date,"%m/%d/%y"))
input_df
}
# load latest Covid-2019 data: confirmed cases
jhu_cases <- as.data.frame(data.table::fread("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv"))
jhu_cases = subset(jhu_cases, !is.na(Lat))
jhu_cases[is.na(jhu_cases)]=0
total_cases <- sum(jhu_cases[,ncol(jhu_cases)])
jhu_cases = update_jhu(jhu_cases, "cases")
if (total_cases!=sum(jhu_cases[nrow(jhu_cases),1:(ncol(jhu_cases)-1)])) { stop(paste0("Error: incorrect processing - total counts do not match")) }
# load latest Covid-2019 data: deaths
jhu_deaths <- as.data.frame(data.table::fread("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv"))
jhu_deaths = subset(jhu_deaths, !is.na(Lat))
jhu_deaths[is.na(jhu_deaths)]=0
total_deaths <- sum(jhu_deaths[,ncol(jhu_deaths)])
jhu_deaths = update_jhu(jhu_deaths, "deaths")
if (total_deaths!=sum(jhu_deaths[nrow(jhu_deaths),1:(ncol(jhu_deaths)-1)])) { stop(paste0("Error: incorrect processing - total counts do not match")) }
# load latest Covid-2019 data: recovered
jhu_rec <- as.data.frame(data.table::fread("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv"))
jhu_rec = subset(jhu_rec, !is.na(Lat))
jhu_rec[is.na(jhu_rec)]=0
total_rec <- sum(jhu_rec[,ncol(jhu_rec)])
jhu_rec = update_jhu(jhu_rec, "recovered")
if (total_rec!=sum(jhu_rec[nrow(jhu_rec),1:(ncol(jhu_rec)-1)])) { stop(paste0("Error: incorrect processing - total counts do not match")) }
# merge dataframes
jhu_merge = merge(jhu_cases, jhu_deaths, by = "Date")
jhu_merge = merge(jhu_merge, jhu_rec, by = "Date")
jhu_merge$Date = as.Date(jhu_merge$Date, format="%Y-%m-%d")
jhu_merge$update = 1:nrow(jhu_merge)
write.csv(jhu_merge, "input_data/jhu_data.csv")
# load country data
countries = read.csv("input_data/countries_codes_and_coordinates.csv")
# check all jhu country names have corresponding country data
jhu_country_list = names(jhu_merge)[grepl("_cases", names(jhu_merge))] %>% str_replace_all(., "_cases", "")
if (all(jhu_country_list %in% countries$jhu_ID)==FALSE) {
stop(paste0("Error: mapping data lacking for the following countries: ",jhu_country_list[(jhu_country_list %in% countries$jhu_ID)==FALSE]))
}
collated_data = NULL
# loop to add new data for each new situation report
for (i in c(1:nrow(jhu_merge))) {
# extract subset of data for date in row i
jhu_subset = jhu_merge[i,]
jhu_subset_cases = jhu_subset[,which(grepl("_cases", names(jhu_subset)))]
jhu_subset_cases = jhu_subset_cases[,colSums(jhu_subset_cases)>0]
jhu_subset_deaths = jhu_subset[,which(grepl("_deaths", names(jhu_subset)))]
jhu_subset_rec = jhu_subset[,which(grepl("_recovered", names(jhu_subset)))]
# build new dataframe to add updated data
new_data = data.frame(jhu_ID = names(jhu_subset_cases) %>% str_replace_all(., "_cases", ""),
date = format(as.Date(jhu_subset$Date[1],"%Y-%m-%d")),
update = i,
cases = NA, new_cases = 0,
deaths = 0, new_deaths = 0,
recovered = 0, new_recovered = 0)
# update column names in new_jhu dataframes to include country names only
colnames(jhu_subset_cases) = colnames(jhu_subset_cases) %>% str_replace_all(., "_cases", "")
colnames(jhu_subset_deaths) = colnames(jhu_subset_deaths) %>% str_replace_all(., "_deaths", "")
colnames(jhu_subset_rec) = colnames(jhu_subset_rec) %>% str_replace_all(., "_recovered", "")
# loop to update cases
for (j in 1:nrow(new_data)) {
# update case numbers
country_name = as.character(new_data$jhu_ID[j])
new_data$cases[j] = jhu_subset_cases[,country_name]
new_data$deaths[j] = jhu_subset_deaths[,country_name]
new_data$recovered[j] = jhu_subset_rec[,country_name]
}
# append new data to collated dataframe
collated_data = rbind(collated_data, new_data)
collated_data$jhu_ID = as.character(collated_data$jhu_ID)
# calculate new cases, deaths and recoveries
if (i == 1) {
collated_data$new_cases = collated_data$cases
collated_data$new_deaths = collated_data$deaths
collated_data$new_recovered = collated_data$recovered
}
if (i > 1) {
# split it into date i and date i-1
today = subset(collated_data, update==i)
yesterday = subset(collated_data, update==(i-1))
for (k in 1:nrow(today)) {
country_name = today$jhu_ID[k]
# if present in yesterday's data, calculate new cases by subtraction
if (country_name %in% yesterday$jhu_ID) {
collated_data$new_cases[collated_data$jhu_ID==country_name & collated_data$update==i] = today$cases[today$jhu_ID==country_name] - yesterday$cases[yesterday$jhu_ID==country_name]
collated_data$new_deaths[collated_data$jhu_ID==country_name & collated_data$update==i] = today$deaths[today$jhu_ID==country_name] - yesterday$deaths[yesterday$jhu_ID==country_name]
collated_data$new_recovered[collated_data$jhu_ID==country_name & collated_data$update==i] = today$recovered[today$jhu_ID==country_name] - yesterday$recovered[yesterday$jhu_ID==country_name]
} else {
# if absent from yesterday's data, new observations = total observations
collated_data$new_cases[collated_data$jhu_ID==country_name & collated_data$update==i] = today$cases[today$jhu_ID==country_name]
collated_data$new_deaths[collated_data$jhu_ID==country_name & collated_data$update==i] = today$deaths[today$jhu_ID==country_name]
collated_data$new_recovered[collated_data$jhu_ID==country_name & collated_data$update==i] = today$recovered[today$jhu_ID==country_name]
}
}
}
}
# allow for repatriation or reassigned cases without negative new_cases, new_deaths and new_recovered counts
collated_data$new_cases[collated_data$new_cases<0] = 0
collated_data$new_deaths[collated_data$new_deaths<0] = 0
collated_data$new_recovered[collated_data$new_recovered<0] = 0
# add active case data (total cases - deaths/recovered)
collated_data$active_cases = collated_data$cases - (collated_data$deaths + collated_data$recovered)
# update country names
collated_data = merge(collated_data, countries[,c("jhu_ID", "country")], by = "jhu_ID")
# re-order
collated_data = collated_data[order(as.Date(collated_data$date, format="%Y-%m-%d"), -collated_data$cases, collated_data$country),]
# update time stamp
collated_data$last_update = NA
collated_data$last_update[nrow(collated_data)] = paste(format(as.POSIXlt(Sys.time(), "GMT"), "%d %B %Y"))
# add rolling 7-day and 30-day averages for new cases and new deaths
collated_data$new_deaths_rolling30 = collated_data$new_deaths_rolling7 = collated_data$new_cases_rolling30 = collated_data$new_cases_rolling7 = NA
country_list = unique(collated_data$jhu_ID)
for (i in 1:length(country_list)) {
country_sub = subset(collated_data, jhu_ID==country_list[i])
# add rolling 7-day average from 7th day onwards
if (nrow(country_sub)>=7) {
for (j in 7:nrow(country_sub)) {
country_sub$new_cases_rolling7[j] = round(mean(country_sub[(j-6):j,"new_cases"]),0)
country_sub$new_deaths_rolling7[j] = round(mean(country_sub[(j-6):j,"new_deaths"]),0)
}
}
if (nrow(country_sub)>=30) {
for (j in 30:nrow(country_sub)) {
country_sub$new_cases_rolling30[j] = round(mean(country_sub[(j-29):j,"new_cases"]),0)
country_sub$new_deaths_rolling30[j] = round(mean(country_sub[(j-29):j,"new_deaths"]),0)
}
}
# integrate with parent dataframe
collated_data$new_cases_rolling7[collated_data$jhu_ID==country_list[i]] = country_sub$new_cases_rolling7
collated_data$new_deaths_rolling7[collated_data$jhu_ID==country_list[i]] = country_sub$new_deaths_rolling7
collated_data$new_cases_rolling30[collated_data$jhu_ID==country_list[i]] = country_sub$new_cases_rolling30
collated_data$new_deaths_rolling30[collated_data$jhu_ID==country_list[i]] = country_sub$new_deaths_rolling30
}
# shift from daily to weekly updates in collated_data
# weekly_ind = seq(1, tail(collated_data$update,1), 7)
# ind_plus = tail(collated_data$update,1) - max(weekly_ind)
# if (ind_plus>0) { weekly_ind = c(1,weekly_ind+ind_plus) }
# collated_reduced = collated_data[collated_data$update %in% weekly_ind,]
# save file
write.csv(collated_data, "input_data/coronavirus_daily.csv", row.names=F)
rm(list = ls())