forked from explosion/spaCy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_misc.py
404 lines (345 loc) · 12.6 KB
/
test_misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import pytest
import os
import ctypes
from pathlib import Path
from spacy.about import __version__ as spacy_version
from spacy import util
from spacy import prefer_gpu, require_gpu, require_cpu
from spacy.ml._precomputable_affine import PrecomputableAffine
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
from spacy.util import dot_to_object, SimpleFrozenList, import_file
from spacy.util import to_ternary_int
from thinc.api import Config, Optimizer, ConfigValidationError, get_current_ops
from thinc.api import set_current_ops
from spacy.training.batchers import minibatch_by_words
from spacy.lang.en import English
from spacy.lang.nl import Dutch
from spacy.language import DEFAULT_CONFIG_PATH
from spacy.schemas import ConfigSchemaTraining
from thinc.api import get_current_ops, NumpyOps, CupyOps
from .util import get_random_doc, make_tempdir
@pytest.fixture
def is_admin():
"""Determine if the tests are run as admin or not."""
try:
admin = os.getuid() == 0
except AttributeError:
admin = ctypes.windll.shell32.IsUserAnAdmin() != 0
return admin
@pytest.mark.parametrize("text", ["hello/world", "hello world"])
def test_util_ensure_path_succeeds(text):
path = util.ensure_path(text)
assert isinstance(path, Path)
@pytest.mark.parametrize(
"package,result", [("numpy", True), ("sfkodskfosdkfpsdpofkspdof", False)]
)
def test_util_is_package(package, result):
"""Test that an installed package via pip is recognised by util.is_package."""
assert util.is_package(package) is result
@pytest.mark.parametrize("package", ["thinc"])
def test_util_get_package_path(package):
"""Test that a Path object is returned for a package name."""
path = util.get_package_path(package)
assert isinstance(path, Path)
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP).initialize()
assert model.get_param("W").shape == (nF, nO, nP, nI)
tensor = model.ops.alloc((10, nI))
Y, get_dX = model.begin_update(tensor)
assert Y.shape == (tensor.shape[0] + 1, nF, nO, nP)
dY = model.ops.alloc((15, nO, nP))
ids = model.ops.alloc((15, nF))
ids[1, 2] = -1
dY[1] = 1
assert not model.has_grad("pad")
d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
assert d_pad[0, 2, 0, 0] == 1.0
ids.fill(0.0)
dY.fill(0.0)
dY[0] = 0
ids[1, 2] = 0
ids[1, 1] = -1
ids[1, 0] = -1
dY[1] = 1
ids[2, 0] = -1
dY[2] = 5
d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
assert d_pad[0, 0, 0, 0] == 6
assert d_pad[0, 1, 0, 0] == 1
assert d_pad[0, 2, 0, 0] == 0
def test_prefer_gpu():
current_ops = get_current_ops()
try:
import cupy # noqa: F401
prefer_gpu()
assert isinstance(get_current_ops(), CupyOps)
except ImportError:
assert not prefer_gpu()
set_current_ops(current_ops)
def test_require_gpu():
current_ops = get_current_ops()
try:
import cupy # noqa: F401
require_gpu()
assert isinstance(get_current_ops(), CupyOps)
except ImportError:
with pytest.raises(ValueError):
require_gpu()
set_current_ops(current_ops)
def test_require_cpu():
current_ops = get_current_ops()
require_cpu()
assert isinstance(get_current_ops(), NumpyOps)
try:
import cupy # noqa: F401
require_gpu()
assert isinstance(get_current_ops(), CupyOps)
except ImportError:
pass
require_cpu()
assert isinstance(get_current_ops(), NumpyOps)
set_current_ops(current_ops)
def test_ascii_filenames():
"""Test that all filenames in the project are ASCII.
See: https://twitter.com/_inesmontani/status/1177941471632211968
"""
root = Path(__file__).parent.parent
for path in root.glob("**/*"):
assert all(ord(c) < 128 for c in path.name), path.name
def test_load_model_blank_shortcut():
"""Test that using a model name like "blank:en" works as a shortcut for
spacy.blank("en").
"""
nlp = util.load_model("blank:en")
assert nlp.lang == "en"
assert nlp.pipeline == []
with pytest.raises(ImportError):
util.load_model("blank:fjsfijsdof")
@pytest.mark.parametrize(
"version,constraint,compatible",
[
(spacy_version, spacy_version, True),
(spacy_version, f">={spacy_version}", True),
("3.0.0", "2.0.0", False),
("3.2.1", ">=2.0.0", True),
("2.2.10a1", ">=1.0.0,<2.1.1", False),
("3.0.0.dev3", ">=1.2.3,<4.5.6", True),
("n/a", ">=1.2.3,<4.5.6", None),
("1.2.3", "n/a", None),
("n/a", "n/a", None),
],
)
def test_is_compatible_version(version, constraint, compatible):
assert util.is_compatible_version(version, constraint) is compatible
@pytest.mark.parametrize(
"constraint,expected",
[
("3.0.0", False),
("==3.0.0", False),
(">=2.3.0", True),
(">2.0.0", True),
("<=2.0.0", True),
(">2.0.0,<3.0.0", False),
(">=2.0.0,<3.0.0", False),
("!=1.1,>=1.0,~=1.0", True),
("n/a", None),
],
)
def test_is_unconstrained_version(constraint, expected):
assert util.is_unconstrained_version(constraint) is expected
@pytest.mark.parametrize(
"a1,a2,b1,b2,is_match",
[
("3.0.0", "3.0", "3.0.1", "3.0", True),
("3.1.0", "3.1", "3.2.1", "3.2", False),
("xxx", None, "1.2.3.dev0", "1.2", False),
],
)
def test_minor_version(a1, a2, b1, b2, is_match):
assert util.get_minor_version(a1) == a2
assert util.get_minor_version(b1) == b2
assert util.is_minor_version_match(a1, b1) is is_match
assert util.is_minor_version_match(a2, b2) is is_match
@pytest.mark.parametrize(
"dot_notation,expected",
[
(
{"token.pos": True, "token._.xyz": True},
{"token": {"pos": True, "_": {"xyz": True}}},
),
(
{"training.batch_size": 128, "training.optimizer.learn_rate": 0.01},
{"training": {"batch_size": 128, "optimizer": {"learn_rate": 0.01}}},
),
],
)
def test_dot_to_dict(dot_notation, expected):
result = util.dot_to_dict(dot_notation)
assert result == expected
assert util.dict_to_dot(result) == dot_notation
def test_set_dot_to_object():
config = {"foo": {"bar": 1, "baz": {"x": "y"}}, "test": {"a": {"b": "c"}}}
with pytest.raises(KeyError):
util.set_dot_to_object(config, "foo.bar.baz", 100)
with pytest.raises(KeyError):
util.set_dot_to_object(config, "hello.world", 100)
with pytest.raises(KeyError):
util.set_dot_to_object(config, "test.a.b.c", 100)
util.set_dot_to_object(config, "foo.bar", 100)
assert config["foo"]["bar"] == 100
util.set_dot_to_object(config, "foo.baz.x", {"hello": "world"})
assert config["foo"]["baz"]["x"]["hello"] == "world"
assert config["test"]["a"]["b"] == "c"
util.set_dot_to_object(config, "foo", 123)
assert config["foo"] == 123
util.set_dot_to_object(config, "test", "hello")
assert dict(config) == {"foo": 123, "test": "hello"}
@pytest.mark.parametrize(
"doc_sizes, expected_batches",
[
([400, 400, 199], [3]),
([400, 400, 199, 3], [4]),
([400, 400, 199, 3, 200], [3, 2]),
([400, 400, 199, 3, 1], [5]),
([400, 400, 199, 3, 1, 1500], [5]), # 1500 will be discarded
([400, 400, 199, 3, 1, 200], [3, 3]),
([400, 400, 199, 3, 1, 999], [3, 3]),
([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
([1, 2, 999], [3]),
([1, 2, 999, 1], [4]),
([1, 200, 999, 1], [2, 2]),
([1, 999, 200, 1], [2, 2]),
],
)
def test_util_minibatch(doc_sizes, expected_batches):
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
tol = 0.2
batch_size = 1000
batches = list(
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
)
assert [len(batch) for batch in batches] == expected_batches
max_size = batch_size + batch_size * tol
for batch in batches:
assert sum([len(doc) for doc in batch]) < max_size
@pytest.mark.parametrize(
"doc_sizes, expected_batches",
[
([400, 4000, 199], [1, 2]),
([400, 400, 199, 3000, 200], [1, 4]),
([400, 400, 199, 3, 1, 1500], [1, 5]),
([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
([1, 2, 9999], [1, 2]),
([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
],
)
def test_util_minibatch_oversize(doc_sizes, expected_batches):
""" Test that oversized documents are returned in their own batch"""
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
tol = 0.2
batch_size = 1000
batches = list(
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
)
assert [len(batch) for batch in batches] == expected_batches
def test_util_dot_section():
cfg_string = """
[nlp]
lang = "en"
pipeline = ["textcat"]
[components]
[components.textcat]
factory = "textcat"
[components.textcat.model]
@architectures = "spacy.TextCatBOW.v1"
exclusive_classes = true
ngram_size = 1
no_output_layer = false
"""
nlp_config = Config().from_str(cfg_string)
en_nlp = util.load_model_from_config(nlp_config, auto_fill=True)
default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
default_config["nlp"]["lang"] = "nl"
nl_nlp = util.load_model_from_config(default_config, auto_fill=True)
# Test that creation went OK
assert isinstance(en_nlp, English)
assert isinstance(nl_nlp, Dutch)
assert nl_nlp.pipe_names == []
assert en_nlp.pipe_names == ["textcat"]
# not exclusive_classes
assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
# Test that default values got overwritten
assert en_nlp.config["nlp"]["pipeline"] == ["textcat"]
assert nl_nlp.config["nlp"]["pipeline"] == [] # default value []
# Test proper functioning of 'dot_to_object'
with pytest.raises(KeyError):
dot_to_object(en_nlp.config, "nlp.pipeline.tagger")
with pytest.raises(KeyError):
dot_to_object(en_nlp.config, "nlp.unknownattribute")
T = util.registry.resolve(nl_nlp.config["training"], schema=ConfigSchemaTraining)
assert isinstance(dot_to_object({"training": T}, "training.optimizer"), Optimizer)
def test_simple_frozen_list():
t = SimpleFrozenList(["foo", "bar"])
assert t == ["foo", "bar"]
assert t.index("bar") == 1 # okay method
with pytest.raises(NotImplementedError):
t.append("baz")
with pytest.raises(NotImplementedError):
t.sort()
with pytest.raises(NotImplementedError):
t.extend(["baz"])
with pytest.raises(NotImplementedError):
t.pop()
t = SimpleFrozenList(["foo", "bar"], error="Error!")
with pytest.raises(NotImplementedError):
t.append("baz")
def test_resolve_dot_names():
config = {
"training": {"optimizer": {"@optimizers": "Adam.v1"}},
"foo": {"bar": "training.optimizer", "baz": "training.xyz"},
}
result = util.resolve_dot_names(config, ["training.optimizer"])
assert isinstance(result[0], Optimizer)
with pytest.raises(ConfigValidationError) as e:
util.resolve_dot_names(config, ["training.xyz", "training.optimizer"])
errors = e.value.errors
assert len(errors) == 1
assert errors[0]["loc"] == ["training", "xyz"]
def test_import_code():
code_str = """
from spacy import Language
class DummyComponent:
def __init__(self, vocab, name):
pass
def initialize(self, get_examples, *, nlp, dummy_param: int):
pass
@Language.factory(
"dummy_component",
)
def make_dummy_component(
nlp: Language, name: str
):
return DummyComponent(nlp.vocab, name)
"""
with make_tempdir() as temp_dir:
code_path = os.path.join(temp_dir, "code.py")
with open(code_path, "w") as fileh:
fileh.write(code_str)
import_file("python_code", code_path)
config = {"initialize": {"components": {"dummy_component": {"dummy_param": 1}}}}
nlp = English.from_config(config)
nlp.add_pipe("dummy_component")
nlp.initialize()
def test_to_ternary_int():
assert to_ternary_int(True) == 1
assert to_ternary_int(None) == 0
assert to_ternary_int(False) == -1
assert to_ternary_int(1) == 1
assert to_ternary_int(1.0) == 1
assert to_ternary_int(0) == 0
assert to_ternary_int(0.0) == 0
assert to_ternary_int(-1) == -1
assert to_ternary_int(5) == -1
assert to_ternary_int(-10) == -1
assert to_ternary_int("string") == -1
assert to_ternary_int([0, "string"]) == -1