forked from explosion/spaCy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_displacy.py
111 lines (93 loc) · 4.3 KB
/
test_displacy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import pytest
from spacy import displacy
from spacy.displacy.render import DependencyRenderer, EntityRenderer
from spacy.tokens import Span, Doc
from spacy.lang.fa import Persian
def test_displacy_parse_ents(en_vocab):
"""Test that named entities on a Doc are converted into displaCy's format."""
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
ents = displacy.parse_ents(doc)
assert isinstance(ents, dict)
assert ents["text"] == "But Google is starting from behind "
assert ents["ents"] == [{"start": 4, "end": 10, "label": "ORG"}]
def test_displacy_parse_deps(en_vocab):
"""Test that deps and tags on a Doc are converted into displaCy's format."""
words = ["This", "is", "a", "sentence"]
heads = [1, 1, 3, 1]
pos = ["DET", "VERB", "DET", "NOUN"]
tags = ["DT", "VBZ", "DT", "NN"]
deps = ["nsubj", "ROOT", "det", "attr"]
doc = Doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
deps = displacy.parse_deps(doc)
assert isinstance(deps, dict)
assert deps["words"] == [
{"lemma": None, "text": words[0], "tag": pos[0]},
{"lemma": None, "text": words[1], "tag": pos[1]},
{"lemma": None, "text": words[2], "tag": pos[2]},
{"lemma": None, "text": words[3], "tag": pos[3]},
]
assert deps["arcs"] == [
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
{"start": 2, "end": 3, "label": "det", "dir": "left"},
{"start": 1, "end": 3, "label": "attr", "dir": "right"},
]
def test_displacy_invalid_arcs():
renderer = DependencyRenderer()
words = [{"text": "This", "tag": "DET"}, {"text": "is", "tag": "VERB"}]
arcs = [
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
{"start": -1, "end": 2, "label": "det", "dir": "left"},
]
with pytest.raises(ValueError):
renderer.render([{"words": words, "arcs": arcs}])
def test_displacy_spans(en_vocab):
"""Test that displaCy can render Spans."""
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc[1:4], style="ent")
assert html.startswith("<div")
def test_displacy_raises_for_wrong_type(en_vocab):
with pytest.raises(ValueError):
displacy.render("hello world")
def test_displacy_rtl():
# Source: http://www.sobhe.ir/hazm/ – is this correct?
words = ["ما", "بسیار", "کتاب", "می\u200cخوانیم"]
# These are (likely) wrong, but it's just for testing
pos = ["PRO", "ADV", "N_PL", "V_SUB"] # needs to match lang.fa.tag_map
deps = ["foo", "bar", "foo", "baz"]
heads = [1, 0, 3, 1]
nlp = Persian()
doc = Doc(nlp.vocab, words=words, tags=pos, heads=heads, deps=deps)
doc.ents = [Span(doc, 1, 3, label="TEST")]
html = displacy.render(doc, page=True, style="dep")
assert "direction: rtl" in html
assert 'direction="rtl"' in html
assert f'lang="{nlp.lang}"' in html
html = displacy.render(doc, page=True, style="ent")
assert "direction: rtl" in html
assert f'lang="{nlp.lang}"' in html
def test_displacy_render_wrapper(en_vocab):
"""Test that displaCy accepts custom rendering wrapper."""
def wrapper(html):
return "TEST" + html + "TEST"
displacy.set_render_wrapper(wrapper)
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc, style="ent")
assert html.startswith("TEST<div")
assert html.endswith("/div>TEST")
# Restore
displacy.set_render_wrapper(lambda html: html)
def test_displacy_options_case():
ents = ["foo", "BAR"]
colors = {"FOO": "red", "bar": "green"}
renderer = EntityRenderer({"ents": ents, "colors": colors})
text = "abcd"
labels = ["foo", "bar", "FOO", "BAR"]
spans = [{"start": i, "end": i + 1, "label": labels[i]} for i in range(len(text))]
result = renderer.render_ents("abcde", spans, None).split("\n\n")
assert "red" in result[0] and "foo" in result[0]
assert "green" in result[1] and "bar" in result[1]
assert "red" in result[2] and "FOO" in result[2]
assert "green" in result[3] and "BAR" in result[3]