Skip to content

dvigal/moex

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyMOEX

Unofficial ISS MOEX API on Python

Installation

Run the following to instal PyMOEX

git clone https://github.com/dvigal/moex.git
pip install .

Dependencies

PyMOEX API runs on Python 3. You'll also need pip.

PyMOEX depends on the following Python packages:

Pandas A powerful data analysis / manipulation library for Python.

Usage examples

from moex import MOEX
moex = MOEX()
data = moex.history_engines_stock_totals_securities(date_start='2018-01-01', date_end='2018-08-16', secid=['SBER'])
data[["SYSTIME", "SECID", "OPEN", "CLOSE", "LOW", "HIGH", "VOLUME"]]

output

sber = data
sber = sber.set_index(DatetimeIndex(sber['DATE']))
sber["VOLUME"] = sber["VOLUME"].apply(float) / 1000000
sber["CLOSE"] = sber["CLOSE"].apply(float)
sber["OPEN"] = sber["OPEN"].apply(float)
sber["LOW"] = sber["LOW"].apply(float)
sber_weekly = sber[["DATE", "CLOSE", "OPEN", "HIGH", "LOW", "VOLUME"]].groupby(Grouper(freq='W', level=0)).agg({"CLOSE" : "max", "OPEN" : "min", "HIGH" : "first", "LOW" : "first", "VOLUME" : "mean"})
sber_weekly["CLOSE"].apply(float).plot(figsize=(16,4), title="Weekly", grid=True, legend=True)
sber_weekly["OPEN"].apply(float).plot(figsize=(16,4), title="Weekly", grid=True, legend=True)
sber_weekly["HIGH"].apply(float).plot(figsize=(16,4), title="Weekly", grid=True, legend=True)
sber_weekly["LOW"].apply(float).plot(figsize=(16,4), title="Weekly", grid=True, legend=True)
sber_weekly["VOLUME"].apply(float).plot(figsize=(16,4), title="Weekly", grid=True, legend=True)

output

About

Unofficial ISS MOEX API on Python

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages