-
Notifications
You must be signed in to change notification settings - Fork 24
/
convert_dl3dv_test.py
255 lines (199 loc) · 7.57 KB
/
convert_dl3dv_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import subprocess
import sys
from pathlib import Path
from typing import Literal, TypedDict
from PIL import Image
import numpy as np
import torch
from jaxtyping import Float, Int, UInt8
from torch import Tensor
from tqdm import tqdm
import argparse
import json
import os
from glob import glob
parser = argparse.ArgumentParser()
parser.add_argument("--input_dir", type=str, help="original dataset directory")
parser.add_argument("--output_dir", type=str, help="processed dataset directory")
parser.add_argument(
"--img_subdir",
type=str,
default="images_8",
help="image directory name",
choices=[
"images_4",
"images_8",
],
)
parser.add_argument("--n_test", type=int, default=10, help="test skip")
parser.add_argument("--which_stage", type=str, default=None, help="dataset directory")
parser.add_argument("--detect_overlap", action="store_true")
args = parser.parse_args()
INPUT_DIR = Path(args.input_dir)
OUTPUT_DIR = Path(args.output_dir)
# Target 200 MB per chunk.
TARGET_BYTES_PER_CHUNK = int(2e8)
def get_example_keys(stage: Literal["test", "train"]) -> list[str]:
image_keys = set(
example.name
for example in tqdm(list((INPUT_DIR / stage).iterdir()), desc="Indexing scenes")
if example.is_dir() and not example.name.startswith(".")
)
# keys = image_keys & metadata_keys
keys = image_keys
# print(keys)
print(f"Found {len(keys)} keys.")
return sorted(list(keys))
def get_size(path: Path) -> int:
"""Get file or folder size in bytes."""
return int(subprocess.check_output(["du", "-b", path]).split()[0].decode("utf-8"))
def load_raw(path: Path) -> UInt8[Tensor, " length"]:
return torch.tensor(np.memmap(path, dtype="uint8", mode="r"))
def load_images(example_path: Path) -> dict[int, UInt8[Tensor, "..."]]:
"""Load JPG images as raw bytes (do not decode)."""
return {
int(path.stem.split("_")[-1]): load_raw(path)
for path in example_path.iterdir()
if path.suffix.lower() not in [".npz"]
}
class Metadata(TypedDict):
url: str
timestamps: Int[Tensor, " camera"]
cameras: Float[Tensor, "camera entry"]
class Example(Metadata):
key: str
images: list[UInt8[Tensor, "..."]]
def load_metadata(example_path: Path) -> Metadata:
blender2opencv = np.array(
[[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
)
url = str(example_path).split("/")[-3]
with open(example_path, "r") as f:
meta_data = json.load(f)
store_h, store_w = meta_data["h"], meta_data["w"]
fx, fy, cx, cy = (
meta_data["fl_x"],
meta_data["fl_y"],
meta_data["cx"],
meta_data["cy"],
)
saved_fx = float(fx) / float(store_w)
saved_fy = float(fy) / float(store_h)
saved_cx = float(cx) / float(store_w)
saved_cy = float(cy) / float(store_h)
timestamps = []
cameras = []
opencv_c2ws = [] # will be used to calculate camera distance
for frame in meta_data["frames"]:
timestamps.append(
int(os.path.basename(frame["file_path"]).split(".")[0].split("_")[-1])
)
camera = [saved_fx, saved_fy, saved_cx, saved_cy, 0.0, 0.0]
# transform_matrix is in blender c2w, while we need to store opencv w2c matrix here
opencv_c2w = np.array(frame["transform_matrix"]) @ blender2opencv
opencv_c2ws.append(opencv_c2w)
camera.extend(np.linalg.inv(opencv_c2w)[:3].flatten().tolist())
cameras.append(np.array(camera))
# timestamp should be the one that match the above images keys, use for indexing
timestamps = torch.tensor(timestamps, dtype=torch.int64)
cameras = torch.tensor(np.stack(cameras), dtype=torch.float32)
return {"url": url, "timestamps": timestamps, "cameras": cameras}
def partition_train_test_splits(root_dir, n_test=10):
sub_folders = sorted(glob(os.path.join(root_dir, "*/")))
test_list = sub_folders[::n_test]
train_list = [x for x in sub_folders if x not in test_list]
out_dict = {"train": train_list, "test": test_list}
return out_dict
def is_image_shape_matched(image_dir, target_shape):
image_path = sorted(glob(str(image_dir / "*")))
if len(image_path) == 0:
return False
image_path = image_path[0]
try:
im = Image.open(image_path)
except:
return False
w, h = im.size
if (h, w) == target_shape:
return True
else:
return False
def legal_check_for_all_scenes(root_dir, target_shape):
valid_folders = []
sub_folders = sorted(glob(os.path.join(root_dir, "*/nerfstudio")))
for sub_folder in tqdm(sub_folders, desc="checking scenes..."):
img_dir = os.path.join(sub_folder, "images_8") # 270x480
# img_dir = os.path.join(sub_folder, 'images_4') # 540x960
if not is_image_shape_matched(Path(img_dir), target_shape):
print(f"image shape does not match for {sub_folder}")
continue
pose_file = os.path.join(sub_folder, "transforms.json")
if not os.path.isfile(pose_file):
print(f"cannot find pose file for {sub_folder}")
continue
valid_folders.append(sub_folder)
return valid_folders
if __name__ == "__main__":
if "images_8" in args.img_subdir:
target_shape = (270, 480) # (h, w)
elif "images_4" in args.img_subdir:
target_shape = (540, 960)
else:
raise ValueError
print("checking all scenes...")
valid_scenes = legal_check_for_all_scenes(INPUT_DIR, target_shape)
print("valid scenes:", len(valid_scenes))
for stage in ["test"]:
error_logs = []
image_dirs = valid_scenes
chunk_size = 0
chunk_index = 0
chunk: list[Example] = []
def save_chunk():
global chunk_size
global chunk_index
global chunk
chunk_key = f"{chunk_index:0>6}"
dir = OUTPUT_DIR / stage
dir.mkdir(exist_ok=True, parents=True)
torch.save(chunk, dir / f"{chunk_key}.torch")
# Reset the chunk.
chunk_size = 0
chunk_index += 1
chunk = []
for image_dir in tqdm(image_dirs, desc=f"Processing {stage}"):
key = os.path.basename(os.path.dirname(image_dir.strip("/")))
image_dir = Path(image_dir) / "images_8" # 270x480
# image_dir = Path(image_dir) / 'images_4' # 540x960
num_bytes = get_size(image_dir)
# Read images and metadata.
try:
images = load_images(image_dir)
except:
print("image loading error")
continue
meta_path = image_dir.parent / "transforms.json"
if not meta_path.is_file():
error_msg = f"---------> [ERROR] no meta file in {key}, skip."
print(error_msg)
error_logs.append(error_msg)
continue
example = load_metadata(meta_path)
# Merge the images into the example.
try:
example["images"] = [
images[timestamp.item()] for timestamp in example["timestamps"]
]
except:
error_msg = f"---------> [ERROR] Some images missing in {key}, skip."
print(error_msg)
error_logs.append(error_msg)
continue
# Add the key to the example.
example["key"] = key
chunk.append(example)
chunk_size += num_bytes
if chunk_size >= TARGET_BYTES_PER_CHUNK:
save_chunk()
if chunk_size > 0:
save_chunk()