forked from NOAA-PSL/Linear_Inverse_Modeling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LIM_analysis.py
124 lines (94 loc) · 5.11 KB
/
LIM_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
'''
File Name : LIM_analysis
Function Name: LIM
Author : Meg D. Fowler
Date : 8 Jan 2020
Summary : This function builds a linear inverse model (LIM) given a certain set of data.
That data should be supplied without an annual cycle. NOTE: there is no
check included here to make sure LIM is an appropriate choice for the dataset
supplied - that is left to the user. It is useful to check, for example, that
the tau test is passed and that there are no Nyquist modes present.
Inputs : xDat - data to use in building LIM. Order should be [variables, time]. For example,
if the goal is to use a year's worth of daily surface temperaure at 6 weather
stations, the data should have dimensions of [6, 365].
lag - the value supplied for Tau_0, the lag used in the lagged covariance matrix.
Outputs : b_alpha - values of Beta (not in a diagonal matrix as used in the calculation of L)
L - the matrix of L values
Q - the matrix of Q values
G - the Green function
c0 - the contemporaneous covariance matrix
cT - the lagged covariance matrix
normU - the modes of G, normalized
v - the adjoints of G
g - the eigenvalues of G
periods - the periods of oscillations in LIM
decayT - the decay times of the periods above
* NOTE: These can be easily reduced (or expanded) by altering the return statement at the bottom of the script)
'''
def LIM(xDat,lag):
import numpy as np
from numpy import linalg as LA
# Take transpose of input data matrix
xDat_T = np.transpose(xDat)
# ------------------------------------------------------------------
# STEP 1: Compute the lagged and contemporaneous covariance matrices
sizes = np.shape(xDat) #Get size of matrix to determine how many data points and how many time records to consider
nDat = sizes[0]
nT = sizes[1]
#Get the value of the data (xDat) at the specified lag to use in computing the lagged covariance matrix
xLagged = np.full([nDat,nT-lag],np.nan) #Initialize matrix full of NaNs
for iT in range(nT-lag): #Get the value of the data at the specified lag
xLagged[:,iT] = xDat[:,iT+lag]
# Initialize matrices full of NaNs
c0 = np.full([nDat, nDat], np.nan) #Initialize matrix full of NaNs
cT = np.full([nDat, nDat], np.nan) #Initialize matrix full of NaNs
# Compute covariance matrices for each data point
for iR in range(nDat):
for iC in range(nDat):
# Contemporaneous covariance matrix:
c0[iR,iC] = np.nansum(xDat[iR,:]*xDat_T[:,iC]) / np.nansum(np.isfinite(xDat[iR,:]*xDat_T[:,iC]))
# Lagged covariance matrix:
cT[iR,iC] = np.nansum(xLagged[iR,:]*xDat_T[:-lag,iC]) / np.nansum(np.isfinite((xLagged[iR,:]*xDat_T[:-lag,iC])))
# --------------------------------------------------------------------
# STEP 2: Compute the Green function, defining its eigen values and vectors
G = cT.dot(LA.inv(c0)) #The Green function is defined as the product between covariance matrices
# Define the modes (u) and eigen-values (g) of G
g, u = LA.eig(G)
iSort = g.argsort()[::-1] #Sort the eigen values and vectors in order
g = g[iSort]
u = u[:,iSort]
# Define the adjoints (v) based on the transpose of G
eigVal_T, v = LA.eig(np.transpose(G))
iSortT = eigVal_T.argsort()[::-1]
eigVal_T = eigVal_T[iSortT]
v = v[:,iSortT]
# But modes should ultimately be sorted by decreasing decay time (i.e., decreasing values of 1/beta.real)
# Compute Beta
b_tau = np.log(g)
b_alpha = b_tau/lag
# Sort data by decreasing decay time
sortVal = -1/b_alpha.real #Decay time
iSort2 = sortVal.argsort()[::-1] #Sorted indices
u = u[:,iSort2]
v = v[:,iSort2]
g = g[iSort2]
b_alpha = b_alpha[iSort2]
# Make diagonal array of Beta (values should be negative)
beta = np.zeros((nDat, nDat), complex)
np.fill_diagonal(beta, b_alpha)
#Need to normalize u so that u_transpose*v = identitity matrix, and u*v_transpose = identity matrix as well
normFactors = np.dot(np.transpose(u),v)
normU = np.dot(u,LA.inv(normFactors))
# --------------------------------------------------------------------
# STEP 3: Compute L and Q matrices
# Compute L matrix as normU * beta * v_transpose
L = np.dot(normU, np.dot(beta, np.transpose(v)))
# Compute Q matrix
Q_negative = np.dot(L, c0) + np.dot(c0, np.transpose(L))
Q = -Q_negative
# Also define the periods and decay times
periods = (2 * np.pi) / b_alpha.imag
decayT = -1 / b_alpha.real
# --------------------------------------------------------------------
# RETURN statement
return(b_alpha, L, Q, G, c0, cT, normU, v, g, periods, decayT)