-
Notifications
You must be signed in to change notification settings - Fork 6
/
parameterize-using-database.py
166 lines (128 loc) · 7.11 KB
/
parameterize-using-database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/env python
#=============================================================================================
# MODULE DOCSTRING
#=============================================================================================
"""
parameterize-gbsa.py
Parameterize the GBSA model on hydration free energies of small molecules using Bayesian inference
via Markov chain Monte Carlo (MCMC).
AUTHORS
John Chodera <[email protected]>, University of California, Berkeley
The AtomTyper class is based on 'patty' by Pat Walters, Vertex Pharmaceuticals.
"""
#=============================================================================================
# GLOBAL IMPORTS
#=============================================================================================
import os
import os.path
import time
import math
import numpy as np
import model
from optparse import OptionParser # For parsing of command line arguments
import hydration_energies.energytasks as energytasks
import pymc
import utils
#=============================================================================================
# MAIN
#=============================================================================================
if __name__=="__main__":
# Create command-line argument options.
usage_string = """\
usage: %prog --types typefile --parameters paramfile --database database --iterations MCMC_iterations --mcmcout MCMC_db_name
example: %prog --types parameters/gbsa-amber-mbondi2.types --parameters parameters/gbsa-amber-mbondi2.parameters --database datasets/FreeSolv/FreeSolv/database.pickle --iterations 500 --mcmcout MCMC --verbose --mol2 datasets/FreeSolv/FreeSolv/tripos_mol2 --subset 10
"""
version_string = "%prog %__version__"
parser = OptionParser(usage=usage_string, version=version_string)
parser.add_option("-t", "--types", metavar='TYPES',
action="store", type="string", dest='atomtypes_filename', default='',
help="Filename defining atomtypes as SMARTS atom matches.")
parser.add_option("-p", "--parameters", metavar='PARAMETERS',
action="store", type="string", dest='parameters_filename', default='',
help="File containing initial parameter set.")
parser.add_option("-d", "--database", metavar='DATABASE',
action="store", type="string", dest='database_filename', default='',
help="Python pickle file of database with molecule names, SMILES strings, hydration free energies, and experimental uncertainties (FreeSolv format).")
parser.add_option("-m", "--mol2", metavar='MOL2',
action="store", type="string", dest='mol2_directory', default='',
help="Directory containing charged mol2 files (optional).")
parser.add_option("-i", "--iterations", metavar='ITERATIONS',
action="store", type="int", dest='iterations', default=150,
help="MCMC iterations.")
parser.add_option("-o", "--mcmcout", metavar='MCMCOUT',
action="store", type="string", dest='mcmcout', default='MCMC',
help="MCMC output database name.")
parser.add_option("-s", "--subset", metavar='SUBSET',
action="store", type="int", dest='subset_size', default=None,
help="Size of subset to consider (for testing).")
parser.add_option("-r", "--rprepare", metavar='PREPARE',
action="store", dest='prepare', default=False, help="Prepare database (not already prepared)")
parser.add_option("-v", "--verbose", metavar='VERBOSE',
action="store_true", dest='verbose', default=False,
help="Verbosity flag.")
# Parse command-line arguments.
(options,args) = parser.parse_args()
# Ensure all required options have been specified.
if options.atomtypes_filename=='' or options.parameters_filename=='' or options.database_filename=='':
parser.print_help()
parser.error("All input files must be specified.")
# Read GBSA parameters.
parameters = utils.read_gbsa_parameters(options.parameters_filename)
print parameters
mcmcIterations = options.iterations
mcmcDbName = os.path.abspath(options.mcmcout)
# Open database.
import pickle
database = pickle.load(open(options.database_filename, 'r'))
# DEBUG: Create a small subset. Do this randomly
if options.subset_size:
subset_size = options.subset_size
cid_list = database.keys()
max_num = len(cid_list)
mol_indices = np.random.choice(max_num, subset_size)
mols_to_use = [cid_list[k] for k in mol_indices]
database = dict((k, database[k]) for k in mols_to_use)
# Prepare the database for calculations, or just load it (already prepared)
if options.prepare:
utils.prepare_database(database, options.atomtypes_filename, parameters, mol2_directory=options.mol2_directory, verbose=options.verbose)
# Compute energies with all molecules.
# print "Computing all energies..."
# start_time = time.time()
# energies = utils.compute_hydration_energies(database, parameters)
# end_time = time.time()
# elapsed_time = end_time - start_time
# print "%.3f s elapsed" % elapsed_time
#
# # Print comparison.
# signed_errors = np.zeros([len(database.keys())], np.float64)
# for (i, (cid, entry)) in enumerate(database.items()):
# # Get metadata.
# molecule = entry['molecule']
# name = molecule.GetTitle()
# dg_exp = float(entry['expt']) * units.kilocalories_per_mole
# ddg_exp = float(entry['d_expt']) * units.kilocalories_per_mole
# signed_errors[i] = energies[molecule] / units.kilocalories_per_mole - dg_exp / units.kilocalories_per_mole
#
# # Form output.
# outstring = "%64s %8.3f %8.3f %8.3f" % (name, dg_exp / units.kilocalories_per_mole, ddg_exp / units.kilocalories_per_mole, energies[molecule] / units.kilocalories_per_mole)
#
# print outstring
#
# print "Initial RMS error %8.3f kcal/mol" % (signed_errors.std())
# Create MCMC model.
obcmodel = model.GBFFAllModels(database, parameters, energytasks.celery_hydration_energies_factory, ngbmodels=3)
# Sample models.
sampler = pymc.MCMC(obcmodel.pymc_model, db='hdf5', dbname=mcmcDbName)
params_to_group = obcmodel.params_to_group
paired_proposal=False
if paired_proposal:
for parmgroup in params_to_group:
sampler.use_step_method(pymc.AdaptiveMetropolis, [obcmodel.pymc_model[parm] for parm in parmgroup], delay=100)
else:
parmgroup = [item for sublist in params_to_group for item in sublist]
sampler.use_step_method(pymc.AdaptiveMetropolis, parmgroup, delay=100)
#This causes all variables to be proposed simultaneously
#sampler.use_step_method(pymc.AdaptiveMetropolis, obcmodel.stochastics_joint_proposal, delay=100)
#sampler.isample(iter=mcmcIterations, burn=0, save_interval=1, verbose=options.verbose)
sampler.sample(iter=mcmcIterations, burn=0, verbose=3, progress_bar=True)
sampler.db.close()