Skip to content

Latest commit

 

History

History
30 lines (24 loc) · 1.24 KB

README.md

File metadata and controls

30 lines (24 loc) · 1.24 KB

gbff

Tools for Bayesian forcefield development

#Prerequisites

  • Install redis with conda install redis
  • Install celery with pip install celery
  • Get FreeSolv database (git clone https://github.com/choderalab/FreeSolv.git)
  • Using commit 3acd4f6a5f005b803fac024a3a87f64b51409e28
  • set FREESOLV_PATH to location of database

#Preparing the database

  • Run code/rebuild_freesolv
  • Initial simulations can be run before the sampling loop to speed up debugging
  • This is enabled by default
  • code/prepare-database --types typefile --parameters parameterfile --output outputpickle

#Running GBFF (examples in scripts)

  • Start redis with the command redis-server
  • Set the environment variable CELERY_CONFIG to point to hydration_energies/config.yaml
  • Edit config.yaml in hydration_energies so that both fields point to the redis server
  • Start worker with the command celery -A hydration_energies worker -l info -c 1 --app=hydration_energies.app:app
  • the c option allows you to choose the number of processes/worker
  • Run parameterize-using-database.py

#Output

  • Defaults to hdf5 backend
  • outputs in /cbio/jclab/projects/pgrinaway/gbff/outputs.tar.gz compressed
  • 300_adaptive_3gbmodel_largejoint_days.h5 is the most recent dataset