-
Notifications
You must be signed in to change notification settings - Fork 0
/
CIFAR10lastepochs.py
211 lines (177 loc) · 4.99 KB
/
CIFAR10lastepochs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import glob
import pandas as pd
import numpy as np
from keras.datasets import cifar10
(X_train_org, Y_train), (X_test_org, Y_test) = cifar10.load_data()
Y_train = Y_train.reshape(Y_train.shape[0])
Y_test = Y_test.reshape(Y_test.shape[0])
class_sums_directory = "class_sums/"
class Scores:
def __init__(self, filename, ticker):
self.filename = filename
self.score = np.loadtxt(
filename,
delimiter=",",
)
self.acc = self._calculate_acc()
self.ticker = ticker
self.weight = 1
self.max = np.max(self.score)
self.min = np.min(self.score)
def _calculate_acc(self):
votes = np.zeros(self.score.shape, dtype=np.float32)
for i in range(Y_test.shape[0]):
votes[i] += 1.0 * self.score[i] / (np.max(self.score) - np.min(self.score))
Y_test_predicted = votes.argmax(axis=1)
return (Y_test_predicted == Y_test).mean()
def extract_features_from_name(name):
split = name.split("_")
method = None
epoch = None
clauses = None
T = None
s = None
patch_size = None
resolution = None
max_included_literals = None
weighted_clauses = None
method = split[0] if len(split) > 0 else None
epoch = split[1] if len(split) > 1 else None
clauses = split[2] if len(split) > 2 else None
T = split[3] if len(split) > 3 else None
s = split[4] if len(split) > 4 else None
patch_size = split[5] if len(split) > 5 else None
if len(split) >= 8:
if len(split) == 9:
resolution = split[6]
max_included_literals = split[7]
weighted_clauses = split[8]
elif len(split) == 8:
max_included_literals = split[6]
weighted_clauses = split[7]
else:
print(f"Unexpected filename structure: {name}")
print(
f"method: {method}, epoch: {epoch}, clauses: {clauses}, T: {T}, s: {s}, patch size: {patch_size}, resolution: {resolution}, max_included_literals: {max_included_literals}, weighted_clauses: {weighted_clauses}"
)
return (
method,
epoch,
clauses,
T,
s,
patch_size,
resolution,
max_included_literals,
weighted_clauses,
)
def extract_epoch(name):
split = name.split("_")
try:
return int(split[1])
except ValueError:
print(f"Skipping file due to unexpected format: {name}")
return None
def extract_method_and_setup(name):
split = name.split("_")
method = split[0]
# epoch = int(split[1])
setup = "_".join(split[2:])
return method, setup
unique_setups = list(
set(
[
extract_method_and_setup(os.path.basename(x))
for x in glob.glob(class_sums_directory + "*")
]
)
)
def extract_last_25_epochs(method, setup):
epochs = [
extract_epoch(os.path.basename(x))
for x in glob.glob(class_sums_directory + method + "*" + setup)
]
epochs.sort()
last_25_epochs = epochs[-25:]
if last_25_epochs != list(range(250 - 25 + 1, 250 + 1)):
print()
print("Something went wrong")
print(last_25_epochs)
print(list(range(len(epochs) - 25 + 1, len(epochs) + 1)))
print(method, setup)
print()
names = []
for epoch in last_25_epochs:
names.append(method + f"_{epoch}_" + setup)
return names
df = pd.DataFrame(
columns=[
"method",
"setup",
"clauses",
"T",
"s",
"patch_size",
"max_included_literals",
"weighted_clauses",
]
+ [f"Accuracy_{i}" for i in range(226, 251)]
)
print(df)
for i, combination in enumerate(unique_setups):
print(i, combination)
method, setup = combination
names = extract_last_25_epochs(method, setup)
print(names)
print(len(names))
accs = [np.nan] * 25
# df = pd.DataFrame(columns=["method", "setup", "clauses", "T", "s", "patch_size", "resolution", "max_included_literals", "weighted_clauses"] + list(range(226, 251)))
for idx, name in enumerate(names):
score = Scores(class_sums_directory + name, name)
accs[idx] = score.acc
print(name, score.acc)
print(accs)
print(len(accs))
print(len(names))
print(len(accs) == len(names))
print()
(
method,
epoch,
clauses,
T,
s,
patch_size,
resolution,
max_included_literals,
weighted_clauses,
) = (
extract_features_from_name(names[0]) if names else ""
)
print(
method,
epoch,
clauses,
T,
s,
patch_size,
resolution,
max_included_literals,
weighted_clauses,
)
print()
print("Creating dataframe")
print()
df.loc[i] = [
method,
setup,
clauses,
T,
s,
patch_size,
max_included_literals,
weighted_clauses,
] + accs
print(df)
df.to_csv("last_25_epochs.csv", index=False)