-
Notifications
You must be signed in to change notification settings - Fork 1
/
cv_printing_functions.r
executable file
·241 lines (186 loc) · 7.5 KB
/
cv_printing_functions.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# This file contains all the code needed to parse and print various sections of your CV
# from data. Feel free to tweak it as you desire!
#' Create a CV_Printer object.
#'
#' @param data_location Path of the spreadsheets holding all your data. This can be
#' either a URL to a google sheet with multiple sheets containing the four
#' data types or a path to a folder containing four `.csv`s with the neccesary
#' data.
#' @param source_location Where is the code to build your CV hosted?
#' @param pdf_mode Is the output being rendered into a pdf? Aka do links need
#' to be stripped?
#' @param sheet_is_publicly_readable If you're using google sheets for data,
#' is the sheet publicly available? (Makes authorization easier.)
#' @return A new `CV_Printer` object.
create_CV_object <- function(data_location,
pdf_mode = FALSE,
sheet_is_publicly_readable = TRUE) {
cv <- list(
pdf_mode = pdf_mode,
links = c()
)
is_google_sheets_location <- stringr::str_detect(data_location, "docs\\.google\\.com")
if(is_google_sheets_location){
if(sheet_is_publicly_readable){
# This tells google sheets to not try and authenticate. Note that this will only
# work if your sheet has sharing set to "anyone with link can view"
googlesheets4::gs4_deauth()
} else {
# My info is in a public sheet so there's no need to do authentication but if you want
# to use a private sheet, then this is the way you need to do it.
# designate project-specific cache so we can render Rmd without problems
options(gargle_oauth_cache = ".secrets")
}
read_gsheet <- function(sheet_id){
googlesheets4::read_sheet(data_location, sheet = sheet_id, skip = 1, col_types = "c")
}
cv$entries_data <- read_gsheet(sheet_id = "entries")
cv$skills <- read_gsheet(sheet_id = "language_skills")
cv$text_blocks <- read_gsheet(sheet_id = "text_blocks")
cv$contact_info <- read_gsheet(sheet_id = "contact_info")
} else {
# Want to go old-school with csvs?
cv$entries_data <- readr::read_csv(paste0(data_location, "entries.csv"), skip = 1)
cv$skills <- readr::read_csv(paste0(data_location, "language_skills.csv"), skip = 1)
cv$text_blocks <- readr::read_csv(paste0(data_location, "text_blocks.csv"), skip = 1)
cv$contact_info <- readr::read_csv(paste0(data_location, "contact_info.csv"), skip = 1)
}
extract_year <- function(dates){
date_year <- stringr::str_extract(dates, "(20|19)[0-9]{2}")
date_year[is.na(date_year)] <- lubridate::year(lubridate::ymd(Sys.Date())) + 10
date_year
}
parse_dates <- function(dates){
date_month <- stringr::str_extract(dates, "(\\w+|\\d+)(?=(\\s|\\/|-)(20|19)[0-9]{2})")
date_month[is.na(date_month)] <- "1"
paste("1", date_month, extract_year(dates), sep = "-") %>%
lubridate::dmy()
}
# Clean up entries dataframe to format we need it for printing
cv$entries_data %<>%
tidyr::unite(
tidyr::starts_with('description'),
col = "description_bullets",
sep = "\n- ",
na.rm = TRUE
) %>%
dplyr::mutate(
description_bullets = ifelse(description_bullets != "", paste0("- ", description_bullets), ""),
start = ifelse(start == "NULL", NA, start),
end = ifelse(end == "NULL", NA, end),
start_year = extract_year(start),
end_year = extract_year(end),
no_start = is.na(start),
has_start = !no_start,
no_end = is.na(end),
has_end = !no_end,
timeline = dplyr::case_when(
no_start & no_end ~ "N/A",
no_start & has_end ~ as.character(end),
has_start & no_end ~ paste("Current", "-", start),
TRUE ~ paste(end, "-", start)
)
) %>%
dplyr::arrange(desc(parse_dates(end))) %>%
dplyr::mutate_all(~ ifelse(is.na(.), 'N/A', .))
cv
}
# Remove links from a text block and add to internal list
sanitize_links <- function(cv, text){
if(cv$pdf_mode){
link_titles <- stringr::str_extract_all(text, '(?<=\\[).+?(?=\\])')[[1]]
link_destinations <- stringr::str_extract_all(text, '(?<=\\().+?(?=\\))')[[1]]
n_links <- length(cv$links)
n_new_links <- length(link_titles)
if(n_new_links > 0){
# add links to links array
cv$links <- c(cv$links, link_destinations)
# Build map of link destination to superscript
link_superscript_mappings <- purrr::set_names(
paste0("<sup>", (1:n_new_links) + n_links, "</sup>"),
paste0("(", link_destinations, ")")
)
# Replace the link destination and remove square brackets for title
text <- text %>%
stringr::str_replace_all(stringr::fixed(link_superscript_mappings)) %>%
stringr::str_replace_all('\\[(.+?)\\]', "\\1")
}
}
list(cv = cv, text = text)
}
#' @description Take a position data frame and the section id desired and prints the section to markdown.
#' @param section_id ID of the entries section to be printed as encoded by the `section` column of the `entries` table
print_section <- function(cv, section_id, glue_template = "default"){
if(glue_template == "default"){
glue_template <- "
### {title}
{loc}
{institution}
{timeline}
{description_bullets}
\n\n\n"
}
section_data <- dplyr::filter(cv$entries_data, section == section_id,
in_resume == TRUE)
# Take entire entries data frame and removes the links in descending order
# so links for the same position are right next to each other in number.
for(i in 1:nrow(section_data)){
for(col in c('title', 'description_bullets')){
strip_res <- sanitize_links(cv, section_data[i, col])
section_data[i, col] <- strip_res$text
cv <- strip_res$cv
}
}
print(glue::glue_data(section_data, glue_template))
invisible(strip_res$cv)
}
#' @description Prints out text block identified by a given label.
#' @param label ID of the text block to print as encoded in `label` column of `text_blocks` table.
print_text_block <- function(cv, label){
text_block <- dplyr::filter(cv$text_blocks, loc == label) %>%
dplyr::pull(text)
strip_res <- sanitize_links(cv, text_block)
cat(strip_res$text)
invisible(strip_res$cv)
}
#' @description Construct a bar chart of skills
#' @param out_of The relative maximum for skills. Used to set what a fully filled in skill bar is.
print_skill_bars <- function(cv, out_of = 5, bar_color = "#969696", bar_background = "#d9d9d9", glue_template = "default"){
if(glue_template == "default"){
glue_template <- "
<div
class = 'skill-bar'
style = \"background:linear-gradient(to right,
{bar_color} {width_percent}%,
{bar_background} {width_percent}% 100%)\"
>{skill}</div>"
}
cv$skills %>%
dplyr::mutate(width_percent = round(100*as.numeric(level)/out_of)) %>%
glue::glue_data(glue_template) %>%
print()
invisible(cv)
}
#' @description List of all links in document labeled by their superscript integer.
print_links <- function(cv) {
n_links <- length(cv$links)
if (n_links > 0) {
cat("
Links {data-icon=link}
--------------------------------------------------------------------------------
<br>
")
purrr::walk2(cv$links, 1:n_links, function(link, index) {
print(glue::glue('{index}. {link}'))
})
}
invisible(cv)
}
#' @description Contact information section with icons
print_contact_info <- function(cv){
glue::glue_data(
cv$contact_info,
"- <i class='fa fa-{icon}'></i> {contact}"
) %>% print()
invisible(cv)
}