Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pandas DataFrame to MySQL/SQLAlchemy table fail with nans #611

Open
huggybearikf opened this issue Apr 10, 2018 · 0 comments
Open

Pandas DataFrame to MySQL/SQLAlchemy table fail with nans #611

huggybearikf opened this issue Apr 10, 2018 · 0 comments

Comments

@huggybearikf
Copy link

huggybearikf commented Apr 10, 2018

I get the error Invalid column name 'nan' when passing a DataFrme with nans to a SQLAlchemy table that allows nans. I've tried passing a na_values with a sqlalchemy null but it doesn't seem to be recognizing the replace.

From the error it seems like it is passing literally nan into the SQL INSERT statements.

Code as below:

# Upload to Server
import sqlalchemy as sa
from odo import odo

tmps = pd.read_csv(EPS_FILE)
tmps['DT'] = pd.to_datetime(fdata['Period (YYYYMMDD)'], format='%Y%m%d')
tmps['Ticker'] = fdata['Ticker'].str.split('-').str[0]
tmps['YYYY'] = tmps['DT'].dt.year
tmps['MM'] = tmps['DT'].dt.month
tmps['DD'] = tmps['DT'].dt.month
rnamecol = {
    'NI-LYEAR': 'LYEAR_MED',
    'NI-LYEAR_MEAN': 'LYEAR_MEAN',
    'NI-CYEAR': 'CYEAR_MED',
    'NI-CYEAR_MEAN': 'CYEAR_MEAN',
    'NI-NYEAR': 'NYEAR_MED',
    'NI-NYEAR_MEAN': 'NYEAR_MEAN',
    'NI-Current_Annual_Stated': 'CURR_ANN',
    'NI-Current_LTM_Sem': 'CURR_LTMSA',
    'NI-Current_LTM_Q': 'CURR_LTMQ',
    'NI-Revise Up': 'ReviseUp',
    'NI-Revise Down': 'ReviseDown',
    'NI-NEST': 'NEST'
}
tmps.rename(columns=rnamecol, inplace=True)

md = sa.MetaData(bind='mssql+pymssql://w:[email protected]/UserDB')
tbl = sa.Table('tmp_FS_NetIncome', md,
    sa.Column('YYYY', sa.Integer, nullable=False),
    sa.Column('MM', sa.Integer, nullable=False),
    sa.Column('DD', sa.Integer, nullable=False),
    sa.Column('DT', sa.DATE, nullable=False),
    sa.Column('Ticker', sa.String(6), nullable=False),
               
    sa.Column('CURR_ANN', sa.Float),
    sa.Column('CURR_LTMSA', sa.Float),
    sa.Column('CURR_LTMQ', sa.Float),
               
    sa.Column('LYEAR_MED', sa.Float),
    sa.Column('LYEAR_MEAN', sa.Float),
    sa.Column('CYEAR_MED', sa.Float),
    sa.Column('CYEAR_MEAN', sa.Float), 
    sa.Column('NYEAR_MED', sa.Float),
    sa.Column('NYEAR_MEAN', sa.Float),
               
    sa.Column('ReviseUp', sa.Integer),
    sa.Column('ReviseDown', sa.Integer),               
    sa.Column('NEST', sa.Integer)
)

tmps = tmps.loc[:, [l.name for l in tbl.columns]]
notnum = set([
    'Ticker', 'DT'
])
tmps['Ticker'] = tmps['Ticker'].astype('str')
tmps['DT'] = pd.to_datetime(tmps['DT'])
for cc in tmps.columns:
    if not cc in notnum:
        tmps[cc] = pd.to_numeric(tmps[cc])

t = odo(
    tmps, tbl, na_values='NULL'        # Also tried na_values=sa.null() or na_values=''
)

And error (truncated) below:

`Check messages from the SQL Server\n") 
[SQL: 'INSERT INTO [tmp_FS_NetIncome] ([YYYY], [MM], [DD], [DT], [Ticker], [CURR_ANN], [CURR_LTMSA], [CURR_LTMQ], [LYEAR_MED], [LYEAR_MEAN], [CYEAR_MED], [CYEAR_MEAN], [NYEAR_MED], [NYEAR_MEAN], [ReviseUp], [ReviseDown], [NEST]) VALUES (%(YYYY)s, %(MM)s, %(DD)s, %(DT)s, %(Ticker)s, %(CURR_ANN)s, %(CURR_LTMSA)s, %(CURR_LTMQ)s, %(LYEAR_MED)s, %(LYEAR_MEAN)s, %(CYEAR_MED)s, %(CYEAR_MEAN)s, %(NYEAR_MED)s, %(NYEAR_MEAN)s, %(ReviseUp)s, %(ReviseDown)s, %(NEST)s)'] 
[parameters: ({
'MM': 12, 'Ticker': '300671', 'DD': 12, 'CURR_ANN': nan, 'LYEAR_MED': nan, 'ReviseDown': nan, 'NYEAR_MED': nan, 'NEST': nan, 'YYYY': 2002, 'LYEAR_MEAN': nan, 'ReviseUp': nan, 'CURR_LTMSA': nan, 'NYEAR_MEAN': nan, 'CYEAR_MED': nan, 'DT': datetime.datetime(2002, 12, 31, 0, 0), 'CURR_LTMQ': nan, 'CYEAR_MEAN': nan}, {'MM': 12, 'Ticker': '300532', 'DD': 12, 'CURR_ANN': nan, 'LYEAR_MED': nan, 'ReviseDown': nan, 'NYEAR_MED': nan, 'NEST': nan, 'YYYY': 2002, 'LYEAR_MEAN': nan, 'ReviseUp': nan, 'CURR_LTMSA': nan, 'NYEAR_MEAN': nan, 'CYEAR_MED': nan, 'DT': datetime.datetime(2002, 12, 31, 0, 0), 'CURR_LTMQ': nan, 'CYEAR_MEAN': nan}`
....

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant