-
Notifications
You must be signed in to change notification settings - Fork 58
/
dataloader.lua
159 lines (138 loc) · 4.63 KB
/
dataloader.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- Multi-threaded data loader
--
local datasets = require 'datasets/init'
local Threads = require 'threads'
Threads.serialization('threads.sharedserialize')
local M = {}
local DataLoader = torch.class('resnet.DataLoader', M)
function DataLoader.create(opt)
-- The train and val loader
local loaders = {}
sets = {'train', 'val'}
if opt.testRelease then sets = {'train', 'val', 'test'} end
for i, split in ipairs(sets) do
local dataset = datasets.create(opt, split)
loaders[i] = M.DataLoader(dataset, opt, split)
end
return table.unpack(loaders)
end
function DataLoader:__init(dataset, opt, split)
local manualSeed = opt.manualSeed
local function init()
require('datasets/' .. opt.dataset)
end
local function main(idx)
if manualSeed ~= 0 then
torch.manualSeed(manualSeed + idx)
end
torch.setnumthreads(1)
_G.dataset = dataset
_G.preprocess = dataset:preprocess()
return dataset:size()
end
local threads, sizes = Threads(opt.nThreads, init, main)
self.threads = threads
self.__size = sizes[1][1]
self.batchSize = opt.batchSize
self.inputRes = opt.inputRes
self.outputRes = opt.outputRes
self.nStack = opt.nStack
end
function DataLoader:size()
return math.ceil(self.__size / self.batchSize)
end
function DataLoader:run(randPerm_)
local randPerm = true
if randPerm_ ~= nil then
randPerm = randPerm_
end
local threads = self.threads
local size, batchSize = self.__size, self.batchSize
local perm = torch.randperm(size)
if not randPerm then
perm = torch.range(1, size)
end
local idx, sample = 1, nil
local nStack = self.nStack
local function enqueue()
while idx <= size and threads:acceptsjob() do
local indices = perm:narrow(1, idx, math.min(batchSize, size - idx + 1))
threads:addjob(
function(indices)
local sz = indices:size(1)
local batch, target = nil, nil
local scale, offset, center, index = {}, {}, {}, {}-- for testing pose
for i, idx in ipairs(indices:totable()) do
local sample = _G.dataset:get(idx)
local input = _G.preprocess(sample.input)
-- local sample = {}
-- sample.input = torch.Tensor(3, 256, 256)
-- sample.target = torch.Tensor(16, 64, 64)
-- local input = sample.input
if not batch then
batch = input:view(1,unpack(input:size():totable()))
else
batch = batch:cat(input:view(1,unpack(input:size():totable())),1)
end
if not target then
target = sample.target:view(1,unpack(sample.target:size():totable()))
else
target = target:cat(sample.target:view(1,unpack(sample.target:size():totable())),1)
end
-- for testing pose
scale[i] = sample.scale
offset[i] = sample.offset
center[i] = sample.center
index[i] = idx
-- label[i] = sample.label or -1
end
-- Set up label for intermediate supervision
if nStack > 1 then
local targetTable = {}
for s = 1, nStack do table.insert(targetTable, target) end
target = targetTable
end
collectgarbage()
return {
input = batch,
target = target,
scale = scale, -- for testing pose
offset = offset, -- for testing pose
center = center, -- for testing pose
index = index,
-- label = label,
}
end,
function(_sample_)
sample = _sample_
end,
indices
)
idx = idx + batchSize
end
end
local n = 0
local function loop()
enqueue()
if not threads:hasjob() then
return nil
end
threads:dojob()
if threads:haserror() then
threads:synchronize()
end
enqueue()
n = n + 1
return n, sample
end
return loop
end
return M.DataLoader