-
Notifications
You must be signed in to change notification settings - Fork 326
/
pytorch-unet.py
170 lines (130 loc) · 4.25 KB
/
pytorch-unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import sys
import time
import cv2
import numpy as np
from PIL import Image
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
import webcamera_utils # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'pytorch-unet.onnx'
MODEL_PATH = 'pytorch-unet.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/pytorch-unet/'
IMAGE_PATH = 'data/imgs/0cdf5b5d0ce1_14.jpg'
SAVE_IMAGE_PATH = 'data/masks/0cdf5b5d0ce1_14.jpg'
IMAGE_WIDTH = 959
IMAGE_HEIGHT = 640
THRESHOLD = 0.5
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'hand-detection.PyTorch hand detection model', IMAGE_PATH, SAVE_IMAGE_PATH
)
args = update_parser(parser)
# ======================
# Utils
# ======================
def load_image(input_path):
return np.array(Image.open(input_path))
def preprocess(img):
img = cv2.resize(
img, (IMAGE_WIDTH, IMAGE_HEIGHT), interpolation=cv2.INTER_AREA
)
img = np.expand_dims(img, 0)
img_trans = img.transpose((0, 3, 1, 2)) # NHWC to NCHW
if img_trans.max() > 1:
img_trans = img_trans / 255
return img_trans.astype(np.float32)
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def post_process(output):
probs = sigmoid(output)
probs = probs.squeeze(0)
full_mask = cv2.resize(
probs.transpose(1, 2, 0),
(IMAGE_WIDTH, IMAGE_HEIGHT),
interpolation=cv2.INTER_CUBIC,
)
mask = full_mask > THRESHOLD
return mask.astype(np.uint8)*255
def segment_image(img, net):
img = preprocess(img)
# feedforward
output = net.predict({'input.1': img})[0]
out = post_process(output)
return out
# ======================
# Main functions
# ======================
def recognize_from_image(net):
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
img = load_image(image_path)
logger.debug(f'input image shape: {img.shape}')
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
out = segment_image(img, net)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
out = segment_image(img, net)
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, out)
logger.info('Script finished successfully.')
def recognize_from_video(net):
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
writer = webcamera_utils.get_writer(
args.savepath, IMAGE_HEIGHT, IMAGE_WIDTH, rgb=False
)
else:
writer = None
frame_shown = False
while(True):
ret, img = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
out = segment_image(img, net)
cv2.imshow('frame', out)
frame_shown = True
# save results
if writer is not None:
writer.write(out)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# model initialize
mem_mode = ailia.get_memory_mode(reduce_constant=True, reuse_interstage=True)
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id, memory_mode=mem_mode)
if args.video is not None:
# video mode
recognize_from_video(net)
else:
# image mode
recognize_from_image(net)
if __name__ == '__main__':
main()