Shape : (1,224,224,3)
class_count=3
+ idx=0
category=409[analog clock ]
prob=9.556556701660156
+ idx=1
category=892[wall clock ]
prob=7.525008201599121
+ idx=2
category=426[barometer ]
prob=4.037744522094727
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 efficientnetv2.py
If you want to specify the input image, put the image path after the --input
option.
$ python3 efficientnetv2.py --input IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 efficientnetv2.py --video VIDEO_PATH
The default setting is to use the optimized model and weights, but you can also switch to the normal model by using the --normal option.
ONNX opset = 11
Tensorflow