Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Plans for multi-objective optimization benchmarks? (target_ids) #28

Open
sgbaird opened this issue Jan 10, 2023 · 1 comment
Open

Plans for multi-objective optimization benchmarks? (target_ids) #28

sgbaird opened this issue Jan 10, 2023 · 1 comment

Comments

@sgbaird
Copy link
Contributor

sgbaird commented Jan 10, 2023

I'm noticing the following convention for Dataset:

target_ids=None,

(i.e., plural target_ids)

When trying to pass multiple list entries to target_ids, I get:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[44], line 1
----> 1 emulator.train()

File c:\Users\sterg\Miniconda3\envs\sdl-demo\lib\site-packages\olympus\emulators\emulator.py:354, in Emulator.train(self, plot, retrain)
    347 # Train
    348 Logger.log(
    349     ">>> Training model on {0:.0%} of the dataset, testing on {1:.0%}...".format(
    350         (1 - self.dataset.test_frac), self.dataset.test_frac
    351     ),
    352     "INFO",
    353 )
--> 354 mdl_train_r2, mdl_test_r2, mdl_train_rmsd, mdl_test_rmsd = self.model.train(
    355     train_features=train_features_scaled,
    356     train_targets=train_targets_scaled,
    357     valid_features=test_features_scaled,
    358     valid_targets=test_targets_scaled,
    359     model_path=model_path,
    360     plot=plot,
    361 )
    363 # write file to indicate training is complete and add R2 in there
    364 with open(f"{model_path}/training_completed.info", "w") as content:

File c:\Users\sterg\Miniconda3\envs\sdl-demo\lib\site-packages\olympus\models\wrapper_tensorflow_model\wrapper_tensorflow_model.py:159, in WrapperTensorflowModel.train(self, train_features, train_targets, valid_features, valid_targets, model_path, plot)
    154 losses.append(loss)
    156 if epoch % self.pred_int == 0:
    157 
    158     # make a prediction on the validation set
--> 159     valid_pred = self.predict(
    160         features=valid_features[valid_indices], num_samples=10
    161     )
    162     valid_r2 = r2_score(valid_targets[valid_indices], valid_pred)
    163     valid_rmsd = np.sqrt(
    164         mean_squared_error(valid_targets[valid_indices], valid_pred)
    165     )

File c:\Users\sterg\Miniconda3\envs\sdl-demo\lib\site-packages\olympus\models\wrapper_tensorflow_model\wrapper_tensorflow_model.py:282, in WrapperTensorflowModel.predict(self, features, num_samples)
    278     for _ in range(num_samples):
    279         predic = self.sess.run(
    280             self.y_pred, feed_dict={self.tf_x: X_test_batch}
    281         )
--> 282         pred[_, start:stop] = predic[:size]
    284 pred = np.mean(pred, axis=0)
    285 return pred

ValueError: could not broadcast input array from shape (50,8) into shape (50,1)
@sgbaird
Copy link
Contributor Author

sgbaird commented May 23, 2023

Just noticed the new manuscript. I'm guessing the changes mentioned in the manuscript will be incorporated here soon https://chemrxiv.org/engage/chemrxiv/article-details/6464ae0afb40f6b3eebaab70.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant