This repository has been archived by the owner on Jun 22, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 30
/
match_card.py
265 lines (225 loc) · 7.74 KB
/
match_card.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""
copyright 2013-2014 Talin Salway
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import sqlite3
from cv_utils import ccoeff_normed, img_from_buffer, float_version
import cv
import math
import config
PREV, NEXT, KEY, RESULT = 0, 1, 2, 3
MAXSIZE = 7000
class GradientCache:
def __init__(self, base_dir):
self.base_dir = base_dir
self.cache = {}
self.root = []
self.root[:] = [self.root, self.root, None, None]
self.full = False
self.currsize = 0
def getCard(self, set_name, name):
key = "%s/%s" % (set_name, name)
if key in self.cache:
#bump entry to front of list, then return
link = self.cache[key]
#remove it from where it is
link_prev, link_next, key, result = link
link_prev[NEXT] = link_next
link_next[PREV] = link_prev
#put in right before root
last = self.root[PREV]
last[NEXT] = self.root[PREV] = link
link[PREV] = last
link[NEXT] = self.root
return result
#load the image
path = os.path.join(self.base_dir, set_name, name+".full.jpg")
img = cv.LoadImage(path,0)
if cv.GetSize(img) != (223, 310):
tmp = cv.CreateImage((223, 310), 8, 1)
cv.Resize(img,tmp)
img = tmp
result = gradient(img)[1]
if self.full:
#add as the new root
self.root[KEY] = key
self.root[RESULT] = result
self.cache[key] = self.root
#make the oldelst link the new root
self.root = self.root[NEXT]
del self.cache[self.root[KEY]]
self.root[KEY] = self.root[RESULT] = None
else:
# put result in a new link at the front of the queue
last = self.root[PREV]
link = [last, self.root, key, result]
self.cache[key] = last[NEXT] = self.root[PREV] = link
self.currsize += 1
self.full = (self.currsize == MAXSIZE)
return result
def load_sets(base_dir, set_names):
cards = []
for dir, subdirs, fnames in os.walk(base_dir):
set = os.path.split(dir)[1]
if set in set_names:
for fname in fnames:
path = os.path.join(dir, fname)
img = cv.LoadImage(path,0)
if cv.GetSize(img) != (223, 310):
tmp = cv.CreateImage((223, 310), 8, 1)
cv.Resize(img,tmp)
img = tmp
phash = dct_hash(img)
cards.append((
fname.replace('.full.jpg',''),
set,
phash
))
return cards
def match_db_cards(known, cache):
connection = sqlite3.connect(config.db_file)
try:
cursor = connection.cursor()
cursor.execute("select rowid, scan_png from inv_cards where recognition_status is 'scanned'")
row = cursor.fetchone()
while row is not None:
try:
id, buf = row
img = img_from_buffer(buf)
(card, set_name), is_sure = match_card(img, known, cache)
card = unicode(card.decode('UTF-8'))
cv.ShowImage('debug', img)
if is_sure:
recognition_status = 'verified'
#we're sure, just mark it as done
else:
recognition_status = 'candidate_match'
#we could be wrong
print "set row %s to %s/%s (%s)" % (id, set_name, card, recognition_status)
update_c = connection.cursor()
update_c.execute("update inv_cards set name=?, set_name=?, recognition_status=? where rowid=?", [card, set_name, recognition_status, id])
connection.commit()
except KeyboardInterrupt as e:
raise e
except Exception as e:
print "failure on row %s" % row[0]
print e
finally:
row = cursor.fetchone()
finally:
connection.close()
#*********************
#card matching section
def gradient(img):
cols, rows = cv.GetSize(img)
x_drv = cv.CreateMat(rows,cols,cv.CV_32FC1)
y_drv = cv.CreateMat(rows,cols,cv.CV_32FC1)
mag = cv.CreateMat(rows,cols,cv.CV_32FC1)
ang = cv.CreateMat(rows,cols,cv.CV_32FC1)
cv.Sobel(img, x_drv, 1, 0)
cv.Sobel(img, y_drv, 0, 1)
cv.CartToPolar(x_drv,y_drv,mag,ang)
return (mag,ang)
def angle_hist(mat):
h = cv.CreateHist([9], cv.CV_HIST_ARRAY, [(0.001,math.pi*2)], True)
cv.CalcHist([cv.GetImage(mat)], h)
#cv.NormalizeHist(h,1.0)
return h
def score(card, known, method):
r = cv.CreateMat(1, 1, cv.CV_32FC1)
cv.MatchTemplate(card, known, r, method)
return r[0,0]
def match_card(card, known_set, cache):
mag, grad = gradient(card)
phash = dct_hash(card)
#fetch the twenty candidates with the lowest hamming distance on the phash
#there's a 99% chance that the matching card is one of the first 20
candidate_matches = sorted([
(name, set_name, hamming_dist(h, phash))
for name, set_name, h in known_set
], key = lambda (n,s,dist): dist)
#we want the first 20
candidate_matches = candidate_matches[:20]
#calculate the correlation score,
#and also find the 'place' of each phash score
#(multiple candidates can tie a phash score, so we rank by count of
#distances < our distance)
candidate_scores= [
(
name, set_name,
dist, len([d for _,_,d in candidate_matches if d < dist]),
ccoeff_normed(grad, cache.getCard(set_name, name))
) for name,set_name,dist in candidate_matches
]
#sort by score, and add a rank
candidate_scores = sorted(candidate_scores,
key = lambda (n,s,d,hr,ccoeff): ccoeff,
reverse = True)
norm_factor = 0 - candidate_scores[-1][4]
total_score = sum([ccoeff + norm_factor for n,s,d,hr,ccoeff in candidate_scores])
#for each score, compute the normaized features (- mean, / std_median)
#for correlation, we want the share of normalized score
features = [
(
name, set_name,
(corr_rank - 9.5) / 5.766,
(h_rank - 6.759942) / 4.522550,
(dist - 17.374153) / 3.014411,
(((corr + norm_factor) / total_score)- 0.050000) / 0.040183,
) for corr_rank, (name, set_name, dist, h_rank, corr)
in enumerate(candidate_scores)
]
#compute the score (based on fancy machine learning.)
#todo: make more automatic and configurable
scores = [
(
name, set_name,
1.0 / (1 + math.e ** -(-6.48728 + 0.53659 * cr + -0.11304 * hr + -3.06121 * d + 2.94122 * corr))
) for name, set_name, cr, hr, d, corr in features
]
#consider the scores in order
scores = sorted(scores, key=lambda (n,s,score): score, reverse=True)
#each score is a probability 0.0-1.0 of how likely it is that
#that name, set_name is the correct card. we'll consider <= 0.50 a no
# >= 0.60 a yes, and 0.5..0.6 a maybe (todo: adjust?)
yes_cards = [(n, s) for n, s, score in scores if score >= 0.6]
maybe_cards = [(n, s) for n, s, score in scores if 0.6 > score > 0.5]
#if we have one or more 'yes' cards
if len(yes_cards) > 0:
#if they're all the same card...
if len(set([n for n,s in yes_cards])) == 1:
#then we're sure it's that card (unsure on set, but it's the same art, so hard to tell
return (yes_cards[0], True)
elif len(maybe_cards) > 0:
#we have no 'yes' cards at all. if we have any maybe cards...
#if they're all the same card
if len(set([n for n,s in maybe_cards])) == 1:
#it *could* be this card, but we're not confidant
return (maybe_cards[0], False)
#we can't really say what it is with any sort of confidence
return (('',''),False)
def dct_hash(img):
img = float_version(img)
small_img = cv.CreateImage((32, 32), 32, 1)
cv.Resize(img[20:190, 20:205], small_img)
dct = cv.CreateMat(32, 32, cv.CV_32FC1)
cv.DCT(small_img, dct, cv.CV_DXT_FORWARD)
dct = dct[1:9, 1:9]
avg = cv.Avg(dct)[0]
dct_bit = cv.CreateImage((8,8),8,1)
cv.CmpS(dct, avg, dct_bit, cv.CV_CMP_GT)
return [dct_bit[y, x]==255.0
for y in xrange(8)
for x in xrange(8)]
def hamming_dist(h1,h2):
return sum(b1 != b2 for (b1,b2) in zip(h1,h2))