-
Notifications
You must be signed in to change notification settings - Fork 3
/
half_adder.py
59 lines (47 loc) · 1.51 KB
/
half_adder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python3
"""
Build a half-adder quantum circuit that takes two bits as input,
encodes them into qubits, then runs the half-adder circuit calculating
the sum and carry qubits, observed over 1000 runs of the experiment
.
References:
https://en.wikipedia.org/wiki/Adder_(electronics)
https://qiskit.org/textbook/ch-states/atoms-computation.html#4.2-Remembering-how-to-add-
"""
import qiskit as q
def half_adder(bit0: int, bit1: int) -> q.result.counts.Counts:
"""
>>> half_adder(0, 0)
{'00': 1000}
>>> half_adder(0, 1)
{'01': 1000}
>>> half_adder(1, 0)
{'01': 1000}
>>> half_adder(1, 1)
{'10': 1000}
"""
# Use Aer's qasm_simulator
simulator = q.Aer.get_backend("qasm_simulator")
qc_ha = q.QuantumCircuit(4, 2)
# encode inputs in qubits 0 and 1
if bit0 == 1:
qc_ha.x(0)
if bit1 == 1:
qc_ha.x(1)
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0, 2)
qc_ha.cx(1, 2)
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0, 1, 3)
qc_ha.barrier()
# extract outputs
qc_ha.measure(2, 0) # extract XOR value
qc_ha.measure(3, 1) # extract AND value
# Execute the circuit on the qasm simulator
job = q.execute(qc_ha, simulator, shots=1000)
# Return the histogram data of the results of the experiment.
return job.result().get_counts(qc_ha)
if __name__ == "__main__":
counts = half_adder(1, 1)
print(f"Half Adder Output Qubit Counts: {counts}")