-
Notifications
You must be signed in to change notification settings - Fork 3
/
sol1.py
188 lines (151 loc) · 5.66 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
Project Euler Problem 203: https://projecteuler.net/problem=203
The binomial coefficients (n k) can be arranged in triangular form, Pascal's
triangle, like this:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
.........
It can be seen that the first eight rows of Pascal's triangle contain twelve
distinct numbers: 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 and 35.
A positive integer n is called squarefree if no square of a prime divides n.
Of the twelve distinct numbers in the first eight rows of Pascal's triangle,
all except 4 and 20 are squarefree. The sum of the distinct squarefree numbers
in the first eight rows is 105.
Find the sum of the distinct squarefree numbers in the first 51 rows of
Pascal's triangle.
References:
- https://en.wikipedia.org/wiki/Pascal%27s_triangle
"""
import math
from typing import List, Set
def get_pascal_triangle_unique_coefficients(depth: int) -> Set[int]:
"""
Returns the unique coefficients of a Pascal's triangle of depth "depth".
The coefficients of this triangle are symmetric. A further improvement to this
method could be to calculate the coefficients once per level. Nonetheless,
the current implementation is fast enough for the original problem.
>>> get_pascal_triangle_unique_coefficients(1)
{1}
>>> get_pascal_triangle_unique_coefficients(2)
{1}
>>> get_pascal_triangle_unique_coefficients(3)
{1, 2}
>>> get_pascal_triangle_unique_coefficients(8)
{1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21}
"""
coefficients = {1}
previous_coefficients = [1]
for step in range(2, depth + 1):
coefficients_begins_one = previous_coefficients + [0]
coefficients_ends_one = [0] + previous_coefficients
previous_coefficients = []
for x, y in zip(coefficients_begins_one, coefficients_ends_one):
coefficients.add(x + y)
previous_coefficients.append(x + y)
return coefficients
def get_primes_squared(max_number: int) -> List[int]:
"""
Calculates all primes between 2 and round(sqrt(max_number)) and returns
them squared up.
>>> get_primes_squared(2)
[]
>>> get_primes_squared(4)
[4]
>>> get_primes_squared(10)
[4, 9]
>>> get_primes_squared(100)
[4, 9, 25, 49]
"""
max_prime = round(math.sqrt(max_number))
non_primes = set()
primes = []
for num in range(2, max_prime + 1):
if num in non_primes:
continue
counter = 2
while num * counter <= max_prime:
non_primes.add(num * counter)
counter += 1
primes.append(num ** 2)
return primes
def get_squared_primes_to_use(
num_to_look: int, squared_primes: List[int], previous_index: int
) -> int:
"""
Returns an int indicating the last index on which squares of primes
in primes are lower than num_to_look.
This method supposes that squared_primes is sorted in ascending order and that
each num_to_look is provided in ascending order as well. Under these
assumptions, it needs a previous_index parameter that tells what was
the index returned by the method for the previous num_to_look.
If all the elements in squared_primes are greater than num_to_look, then the
method returns -1.
>>> get_squared_primes_to_use(1, [4, 9, 16, 25], 0)
-1
>>> get_squared_primes_to_use(4, [4, 9, 16, 25], 0)
1
>>> get_squared_primes_to_use(16, [4, 9, 16, 25], 1)
3
"""
idx = max(previous_index, 0)
while idx < len(squared_primes) and squared_primes[idx] <= num_to_look:
idx += 1
if idx == 0 and squared_primes[idx] > num_to_look:
return -1
if idx == len(squared_primes) and squared_primes[-1] > num_to_look:
return -1
return idx
def get_squarefree(
unique_coefficients: Set[int], squared_primes: List[int]
) -> Set[int]:
"""
Calculates the squarefree numbers inside unique_coefficients given a
list of square of primes.
Based on the definition of a non-squarefree number, then any non-squarefree
n can be decomposed as n = p*p*r, where p is positive prime number and r
is a positive integer.
Under the previous formula, any coefficient that is lower than p*p is
squarefree as r cannot be negative. On the contrary, if any r exists such
that n = p*p*r, then the number is non-squarefree.
>>> get_squarefree({1}, [])
set()
>>> get_squarefree({1, 2}, [])
set()
>>> get_squarefree({1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21}, [4, 9, 25])
{1, 2, 3, 5, 6, 7, 35, 10, 15, 21}
"""
if len(squared_primes) == 0:
return set()
non_squarefrees = set()
prime_squared_idx = 0
for num in sorted(unique_coefficients):
prime_squared_idx = get_squared_primes_to_use(
num, squared_primes, prime_squared_idx
)
if prime_squared_idx == -1:
continue
if any(num % prime == 0 for prime in squared_primes[:prime_squared_idx]):
non_squarefrees.add(num)
return unique_coefficients.difference(non_squarefrees)
def solution(n: int = 51) -> int:
"""
Returns the sum of squarefrees for a given Pascal's Triangle of depth n.
>>> solution(1)
0
>>> solution(8)
105
>>> solution(9)
175
"""
unique_coefficients = get_pascal_triangle_unique_coefficients(n)
primes = get_primes_squared(max(unique_coefficients))
squarefrees = get_squarefree(unique_coefficients, primes)
return sum(squarefrees)
if __name__ == "__main__":
print(f"{solution() = }")