-
Notifications
You must be signed in to change notification settings - Fork 3
/
sol3.py
61 lines (49 loc) · 1.62 KB
/
sol3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
Project Euler Problem 10: https://projecteuler.net/problem=10
Summation of primes
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
Find the sum of all the primes below two million.
References:
- https://en.wikipedia.org/wiki/Prime_number
- https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
"""
def solution(n: int = 2000000) -> int:
"""
Returns the sum of all the primes below n using Sieve of Eratosthenes:
The sieve of Eratosthenes is one of the most efficient ways to find all primes
smaller than n when n is smaller than 10 million. Only for positive numbers.
>>> solution(1000)
76127
>>> solution(5000)
1548136
>>> solution(10000)
5736396
>>> solution(7)
10
>>> solution(7.1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: 'float' object cannot be interpreted as an integer
>>> solution(-7) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
IndexError: list assignment index out of range
>>> solution("seven") # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: can only concatenate str (not "int") to str
"""
primality_list = [0 for i in range(n + 1)]
primality_list[0] = 1
primality_list[1] = 1
for i in range(2, int(n ** 0.5) + 1):
if primality_list[i] == 0:
for j in range(i * i, n + 1, i):
primality_list[j] = 1
sum_of_primes = 0
for i in range(n):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f"{solution() = }")