-
Notifications
You must be signed in to change notification settings - Fork 3
/
hardy_ramanujanalgo.py
45 lines (35 loc) · 1.01 KB
/
hardy_ramanujanalgo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# This theorem states that the number of prime factors of n
# will be approximately log(log(n)) for most natural numbers n
import math
def exactPrimeFactorCount(n):
"""
>>> exactPrimeFactorCount(51242183)
3
"""
count = 0
if n % 2 == 0:
count += 1
while n % 2 == 0:
n = int(n / 2)
# the n input value must be odd so that
# we can skip one element (ie i += 2)
i = 3
while i <= int(math.sqrt(n)):
if n % i == 0:
count += 1
while n % i == 0:
n = int(n / i)
i = i + 2
# this condition checks the prime
# number n is greater than 2
if n > 2:
count += 1
return count
if __name__ == "__main__":
n = 51242183
print(f"The number of distinct prime factors is/are {exactPrimeFactorCount(n)}")
print("The value of log(log(n)) is {:.4f}".format(math.log(math.log(n))))
"""
The number of distinct prime factors is/are 3
The value of log(log(n)) is 2.8765
"""