-
Notifications
You must be signed in to change notification settings - Fork 2
/
SU3Gen.m
177 lines (128 loc) · 4.75 KB
/
SU3Gen.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
(* ::Package:: *)
(*
This file is part of BProbeM.
"BProbeM, quantum and fuzzy geometry scanner" Copyright 2018 Timon Gutleb ([email protected]),
see https://github.com/TSGut/BProbeM/
Original version "BProbe" Copyright 2015 Lukas Schneiderbauer ([email protected]),
see https://github.com/lschneiderbauer/BProbe
BProbeM and BProbe are free software: you can redistribute them and/or modify
them under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
BProbeM and BProbe are distributed in the hope that they will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with BProbeM. If not, see <http://www.gnu.org/licenses/>.
*)
BeginPackage["BProbeM`SU3Gen`"];
(*
"MatrixRepSU3[highestweight] returns a list of matrices which are the irrep of " <>
"the su(3) Lie-Algebra with highest weight 'highestweight'.\n" <>
"The parameter is to be expected in the form {n,m}.\n\n" <>
"Example: t = MatrixRepSU3[{1,1}]; t[[1]] gives the first matrix rep.";
*)
Begin["`Private`"];
MatrixRepSU3[highestweight_] := Block[{irrep=highestweight,t,com},
(* convert weight to GT-pattern format *)
irrep = {irrep[[2]],irrep[[1]]}; (* swap *)
irrep[[1]]+= irrep[[2]];
irrep=Append[irrep,0];
(* helper function *)
com[a_,b_]:=a.b-b.a;
(* now explicitely construct ladder operators for su(3) *)
(* and from them the actual representations *)
Block[{J1min,J2min,J3min,J1plu,J2plu,J3plu,J1z,J2z,J3z},
J1min = GenerateLadderMatrix[1,irrep];
J2min = GenerateLadderMatrix[2,irrep];
J1plu = ConjugateTranspose[J1min];
J2plu = ConjugateTranspose[J2min];
J3plu = com[J1plu,J2plu];
J3min = ConjugateTranspose[J3plu];
J1z = 1/2 com[J1plu,J1min];
J2z = 1/2 com[J2plu,J2min];
J3z = 1/2 com[J3plu,J3min];
t = Table[0,{8}];
t[[1]] = Simplify[1/2(J1plu+J1min)];
t[[2]] = Simplify[1/(2I) * (J1plu-J1min)];
t[[3]] = Simplify[1/2(J3plu+J3min)];
t[[4]] = Simplify[1/(2I) * (J3plu-J3min)] ;
t[[5]] = Simplify[1/2(J2plu+J2min)];
t[[6]] = Simplify[1/(2I) * (J2plu-J2min)];
t[[7]] = Simplify[J1z];
t[[8]] = Simplify[1/(2*Sqrt[3])*(2*J2z+2*J3z)];
(* insert 7th entry to 3rd entry, to match literature standard *)
t[[{3,4,5,6,7}]] = t[[{7,3,4,5,6}]];
];
Return[t];
]
(* Generates the indl-th ladder matrix of an irrep (specified in GT-language) *)
GenerateLadderMatrix[indl_, irrepPattern_] := Block[{l=indl,irrep=irrepPattern,p,dim,i,j,k,matrix},
p = GenerateGTPattern[irrep]; (* generate all possible GT patterns for this irrep *)
(* the patterns correspond to the weight vectors (no multiplicities!) *)
dim = Length[p]; (* dimension of the carrier space *)
matrix = Table[0,{dim},{dim}];
For[i=dim,i>= 1,i--,
For[j=dim,j>= 1,j--,
k = ComparePattern[l,p[[i]],p[[j]]];
If[ k!=0,
matrix[[i,j]]=J[p[[i]],k,l];
];
];
];
Return[matrix];
]
(* Compare two patterns and check whether they are connected by indl-th ladder operators *)
(* if they are not connected, the function returns 0, otherwise *)
(* it returns the index of the changed column. *)
ComparePattern[indl_,pattern1_,pattern2_]:=Block[{l=indl,p1=pattern1,p2=pattern2,k},
k=0;
If[l==1,
If[p1[1,2]==p2[1,2] && p1[2,2]==p2[2,2] && p1[1,1]==p2[1,1]+1,
k=1;
,
k=0;
]
] If[l==2,
If [p1[1,1]!=p2[1,1], k=0,
If[p1[1,2]==p2[1,2] && p1[2,2] == (p2[2,2]+1),
k=2;
];
If[p1[2,2]==p2[2,2] && p1[1,2]==(p2[1,2]+1),
k=1;
];
];
];
Return[k];
]
(* Generate all possible su(3) GT patterns for an irrep 'irrepPattern' *)
(* By construction there are no multiplicities and the length of the list *)
(* is the dimension of the irrep *)
GenerateGTPattern[irrepPattern_]:=Block[{irrep=irrepPattern,list,i,j,k},
list={};(* list of all GT patterns *)
For[i=irrep[[3]], irrep[[3]] <= i <= irrep[[2]], i++, (* upper right *)
For[j=irrep[[2]], irrep[[2]]<= j <= irrep[[1]], j++, (* upper left *)
For[k=i, i <= k <= j, k++, (* bottom *)
Module[{m},
m[1,3]=irrep[[1]];
m[2,3]=irrep[[2]];
m[3,3]=irrep[[3]];
m[1,2]=j;
m[2,2]=i;
m[1,1]=k;
list=Append[list,m];
];
];
];
];
Return [list];
];
(* Nonzero matrix elements of the lth ladder operator
<m-m^kl|J_(l)|m>
Formula by Gelfand, Tsetlin *)
J[m_,k_,l_]:=Sqrt[-Product[m[\[Kappa],l+1]-m[k,l]+k-\[Kappa]+1,{\[Kappa],1,l+1}]*
Product[m[\[Kappa],l-1]-m[k,l]+k-\[Kappa],{\[Kappa],1,l-1}]/
Product[If[\[Kappa]!= k,(m[\[Kappa],l]-m[k,l]+k-\[Kappa]+1)(m[\[Kappa],l]-m[k,l]+k-\[Kappa]),1],{\[Kappa],1,l}]];
End[];
EndPackage[];