-
Notifications
You must be signed in to change notification settings - Fork 2
/
SU2Gen.m
69 lines (45 loc) · 1.78 KB
/
SU2Gen.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
(* ::Package:: *)
(*
This file is part of BProbeM.
"BProbeM, quantum and fuzzy geometry scanner" Copyright 2018 Timon Gutleb ([email protected]),
see https://github.com/TSGut/BProbeM/
Original version "BProbe" Copyright 2015 Lukas Schneiderbauer ([email protected]),
see https://github.com/lschneiderbauer/BProbe
BProbeM and BProbe are free software: you can redistribute them and/or modify
them under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
BProbeM and BProbe are distributed in the hope that they will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with BProbeM. If not, see <http://www.gnu.org/licenses/>.
*)
BeginPackage["BProbeM`SU2Gen`"];
(*
"MatrixRepSU2[n] returns a list of matrices which are the irrep of " <>
"the su(2) Lie-Algebra with dimension 'n'.\n\n" <>
"Example: j = MatrixRepSU2[3]; j[[1]] gives the first matrix rep.";
*)
Begin["`Private`"];
MatrixRepSU2[dim_] := Block[{n=dim,i,t,matrix,com,Jmin,Jplu},
(* generate list of equations *)
(* qm convention: J\pm |jm> = sqrt( (j \mp m) (j \pm m+1) ) |j,m+1> *)
(* m = i - n/2 - 1/2 *)
(* j = (n-1)/2 *)
matrix = Table[0,{n},{n}];
For[i=1,i<n,i++, (* absteiger *)
matrix[[i+1,i]] = Sqrt[(n-i)i];
];
Jmin = matrix;
Jplu = ConjugateTranspose[Jmin];
com[a_,b_]:=a.b - b.a;
t = Table[{},{3}];
t[[1]] = 1/2 (Jmin + Jplu);
t[[2]] = 1/(2I) (Jplu - Jmin);
t[[3]] = 1/I com[t[[1]],t[[2]]];
Return[t];
];
End[];
EndPackage[];