Skip to content

SSusantAchary/AI-in-Medical-Imaging

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Along with this github project, this page will also be updated

https://www.notion.so/ideasandexecution/a7aba15ec65948f9a3d0a04da2f2d0d0?v=426eca156f7a4824b0f8f8504f1c4bcd

Image Analysis

https://petebankhead.gitbooks.io/imagej-intro/content/

MRI - Brain Tumor

Frameworks

http://www.niftynet.io/#features
https://cmiclab.cs.ucl.ac.uk/CMIC/NiftyNet/

MRI basics

https://www.youtube.com/watch?v=CKbemQBAzUE

This is a very good class on dicom and nifti preprocessing
https://www.coursera.org/learn/neurohacking

what is nifti affine:
http://nipy.org/nibabel/coordinate_systems.html

nifti affine usage:
https://www.programcreek.com/python/example/98177/nibabel.Nifti1Image

sitk image tutorial notebooks:
https://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/Python_html/03_Image_Details.html

https://blog.dataversioncontrol.com/best-practices-of-orchestrating-python-and-r-code-in-ml-projects-f28f3a879484

a good website to find usage examples:
https://www.programcreek.com/python/example/96382/SimpleITK.WriteImage

pyradiomics notebook:
https://www.radiomics.io/pyradiomicsnotebook.html

Neuroscience software

The best slicer software: https://www.slicer.org/
http://neuro.debian.net/
https://miykael.github.io/nipype-beginner-s-guide/installation.html
https://miykael.github.io/nipype_tutorial/
https://github.com/nilearn/nilearn

Data

https://www.smir.ch/
https://wiki.cancerimagingarchive.net/display/DOI/Segmentation+Labels+and+Radiomic+Features+for+the+Pre-operative+Scans+of+the+TCGA-GBM+collection
https://wiki.cancerimagingarchive.net/display/DOI/TCIA+Analysis+Results

Dicom / Nifti Preprocessing

https://github.com/mingrui/mri_modality_classification_deep_learning

Segmentation

https://github.com/Kamnitsask/deepmedic
https://github.com/zsdonghao/u-net-brain-tumor
https://github.com/ellisdg/3DUnetCNN
https://github.com/fabianbormann/Tensorflow-DeconvNet-Segmentation
https://github.com/naldeborgh7575/brain_segmentation
https://github.com/e271141/BRATS
https://github.com/kaspermarstal/BrainNet
https://github.com/jocicmarko/ultrasound-nerve-segmentation
https://github.com/pietz/brats-segmentation
https://github.com/GUR9000/Deep_MRI_brain_extraction
https://github.com/cvdlab/nn-segmentation-for-lar

Resources

https://github.com/desimone/segmentation-models
https://github.com/madlymissyou/deep-learning-for-neuroimage
https://github.com/jindongwang/transferlearning
https://github.com/dformoso/machine-learning-mindmap
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/GUR9000/Deep_MRI_brain_extraction
https://github.com/Radiomics/pyradiomics
https://github.com/nipy/niwidgets

WSI - Pathology Image

Computational Pathology Basics

https://www.youtube.com/watch?v=sxkDzbtIJ5g

Similar Problems

https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data
https://blog.deepsense.ai/deep-learning-for-satellite-imagery-via-image-segmentation/
https://vooban.com/en/tips-articles-geek-stuff/satellite-image-segmentation-workflow-with-u-net/
https://github.com/alexander-rakhlin/ICIAR2018#method
https://computationalpathologygroup.github.io/ASAP/#home

Data

https://camelyon17.grand-challenge.org/data/

Tools

https://github.com/Peter554/StainTools
https://bmi.stonybrookmedicine.edu/node/535

Models

https://github.com/CODAIT/deep-histopath

Hardware

https://github.com/Microsoft/pai

Genome

Secure, Private, Distributed computing https://github.com/mingrui/secure-gwas

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%