forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_tf_SpaceToBatch.py
68 lines (54 loc) · 2.95 KB
/
test_tf_SpaceToBatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from common.tf_layer_test_class import CommonTFLayerTest
class TestSpaceToBatch(CommonTFLayerTest):
def create_space_to_batch_net(self, in_shape, pads_value, block_shape_value):
import tensorflow as tf
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
x = tf.compat.v1.placeholder(tf.float32, in_shape, 'Input')
pads = tf.constant(pads_value, dtype=tf.int32)
block_shape = tf.constant(block_shape_value, dtype=tf.int32)
tf.space_to_batch_nd(x, block_shape, pads, name='Operation')
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(in_shape=[4, 1, 1, 3], block_shape_value=[1], pads_value=[[0, 0]]),
dict(in_shape=[2, 3, 6, 5], block_shape_value=[2, 3, 3], pads_value=[[1, 0], [0, 0], [2, 2]]),
dict(in_shape=[1, 2, 9, 1], block_shape_value=[4, 3], pads_value=[[1, 1], [2, 4]]),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_space_to_batch_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
self._test(*self.create_space_to_batch_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
test_data_4D = [
dict(in_shape=[1, 2, 2, 3], block_shape_value=[2, 2], pads_value=[[0, 0], [0, 0]]),
dict(in_shape=[1, 2, 1, 4], block_shape_value=[3, 2, 2], pads_value=[[1, 0], [0, 1], [1, 1]])
]
@pytest.mark.parametrize("params", test_data_4D)
@pytest.mark.nightly
def test_space_to_batch_4D(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
self._test(*self.create_space_to_batch_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
test_data_5D = [
dict(in_shape=[3, 3, 4, 5, 2], block_shape_value=[3, 4, 2],
pads_value=[[1, 2], [0, 0], [3, 0]]),
dict(in_shape=[3, 3, 4, 5, 2], block_shape_value=[3, 4, 2, 2],
pads_value=[[1, 2], [0, 0], [3, 0], [0, 0]]),
]
@pytest.mark.parametrize("params", test_data_5D)
@pytest.mark.nightly
def test_space_to_batch_5D(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
self._test(*self.create_space_to_batch_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)