forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_tf_Shape.py
53 lines (45 loc) · 1.96 KB
/
test_tf_Shape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
class TestShape(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'input' in inputs_info
input_shape = inputs_info['input']
inputs_data = {}
inputs_data['input'] = np.random.randint(-10, 10, input_shape).astype(self.input_type)
return inputs_data
def create_shape_net(self, input_shape, input_type, out_type):
self.input_type = input_type
types_map = {
np.float32: tf.float32,
np.int32: tf.int32
}
assert input_type in types_map, "Incorrect test case"
tf_type = types_map[input_type]
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
input = tf.compat.v1.placeholder(tf_type, input_shape, 'input')
if out_type is not None:
tf.raw_ops.Shape(input=input, out_type=out_type)
else:
tf.raw_ops.Shape(input=input)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(input_shape=[2, 3], input_type=np.float32, out_type=tf.int32),
dict(input_shape=[3, 4, 5], input_type=np.int32, out_type=tf.int64),
dict(input_shape=[1], input_type=np.int32, out_type=None),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_shape_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
self._test(*self.create_shape_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)