forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_tf_ReverseSequence.py
53 lines (46 loc) · 2.58 KB
/
test_tf_ReverseSequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
class TestReverseSequence(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'input' in inputs_info
assert 'seq_lengths' in inputs_info
input_shape = inputs_info['input']
seq_lengths_shape = inputs_info['seq_lengths']
inputs_data = {}
inputs_data['input'] = np.random.randint(-50, 50, input_shape).astype(self.input_type)
inputs_data['seq_lengths'] = np.random.randint(0, self.max_seq_length + 1, seq_lengths_shape).astype(
self.seq_lengths_type)
return inputs_data
def create_reverse_sequence_net(self, input_shape, input_type, seq_lengths_type, seq_dim, batch_dim):
self.input_type = input_type
self.seq_lengths_type = seq_lengths_type
assert 0 <= batch_dim and batch_dim < len(input_shape), "Incorrect `batch_dim` in the test case"
assert 0 <= seq_dim and seq_dim < len(input_shape), "Incorrect `seq_dim` in the test case"
self.max_seq_length = input_shape[seq_dim]
batch_size = input_shape[batch_dim]
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
input = tf.compat.v1.placeholder(input_type, input_shape, 'input')
seq_lengths = tf.compat.v1.placeholder(seq_lengths_type, [batch_size], 'seq_lengths')
tf.raw_ops.ReverseSequence(input=input, seq_lengths=seq_lengths, seq_dim=seq_dim, batch_dim=batch_dim)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(input_shape=[2, 3], input_type=np.int32, seq_lengths_type=np.int64, seq_dim=1, batch_dim=0),
dict(input_shape=[3, 6, 4], input_type=np.float32, seq_lengths_type=np.int32, seq_dim=2, batch_dim=0),
dict(input_shape=[6, 3, 4, 2], input_type=np.float32, seq_lengths_type=np.int32, seq_dim=0, batch_dim=3),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_reverse_sequence_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
self._test(*self.create_reverse_sequence_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)