forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_tf_ParallelDynamicStitch.py
95 lines (81 loc) · 4.48 KB
/
test_tf_ParallelDynamicStitch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
class TestParallelDynamicStitch(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
inputs_data = {}
num_elements = 0
assert len(inputs_info) % 2 == 0, "Number of inputs should be divisible by 2."
data_input_cnt = len(inputs_info)//2
for i in range(1, data_input_cnt + 1):
indices_in_name = "indices{}".format(i)
assert indices_in_name in inputs_info, "Test error: inputs_info must contain `{}`".format(indices_in_name)
indices_shape = inputs_info[indices_in_name]
num_elements = num_elements + np.prod(indices_shape, dtype=int)
# we support DynamicStitch via decomposition to subgraph with ScatterUpdate op
# ScatterUpdate has undefined behavior if there are multiple identical indexes
# indices_array = np.arange(np.random.randint(1, num_elements+1), dtype=np.intc)
indices_array = np.arange(num_elements, dtype=np.intc)
np.random.shuffle(indices_array)
indices_array = np.resize(indices_array, num_elements)
idx = 0
for i in range(1, data_input_cnt + 1):
data_in_name = "data{}".format(i)
indices_in_name = "indices{}".format(i)
assert data_in_name in inputs_info, "Test error: inputs_info must contain `{}`".format(data_in_name)
data_shape = inputs_info[data_in_name]
indices_shape = inputs_info[indices_in_name]
inputs_data[data_in_name] = np.random.randint(-50, 50, data_shape)
num_elements_i = np.prod(indices_shape, dtype=int)
inputs_data[indices_in_name] = np.reshape(indices_array[idx:idx+num_elements_i], indices_shape)
idx = idx + num_elements_i
return inputs_data
def create_parallel_dynamic_stitch_net(self, data_input_cnt, shape_of_element, data_type):
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
indices = []
data = []
data_shape = shape_of_element
indices_shape = []
for i in range(1, data_input_cnt + 1):
indices.append(tf.compat.v1.placeholder(tf.int32, indices_shape, 'indices{}'.format(i)))
data.append(tf.compat.v1.placeholder(data_type, data_shape, 'data{}'.format(i)))
data_shape.insert(0, i)
indices_shape.insert(0, i)
tf.dynamic_stitch(indices, data)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(data_input_cnt=1, shape_of_element=[1], data_type=tf.float32),
dict(data_input_cnt=2, shape_of_element=[2, 2], data_type=tf.float32),
dict(data_input_cnt=3, shape_of_element=[2, 1, 2], data_type=tf.float32),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_parallel_dynamic_stitch_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
if not use_new_frontend:
pytest.skip("DynamicStitch operation is not supported via legacy frontend.")
self._test(*self.create_parallel_dynamic_stitch_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
test_data_different_types = [
dict(data_input_cnt=4, shape_of_element=[3, 2], data_type=tf.float64),
dict(data_input_cnt=2, shape_of_element=[2, 2, 1], data_type=tf.int64),
dict(data_input_cnt=3, shape_of_element=[2, 1, 2, 4], data_type=tf.int32),
]
@pytest.mark.parametrize("params", test_data_different_types)
@pytest.mark.nightly
def test_parallel_dynamic_stitch_different_types(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
if not use_new_frontend:
pytest.skip("DynamicStitch operation is not supported via legacy frontend.")
self._test(*self.create_parallel_dynamic_stitch_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)