forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_tf_IsNan.py
50 lines (43 loc) · 1.91 KB
/
test_tf_IsNan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
from common.utils.tf_utils import mix_array_with_value
class TestIsNan(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'x' in inputs_info, "Test error: inputs_info must contain `data`"
x_shape = inputs_info['x']
inputs_data = {}
data = np.random.randint(-50, 50, x_shape).astype(np.float32)
# mix data with np.inf and np.nan
data = mix_array_with_value(data, np.nan)
inputs_data['x'] = mix_array_with_value(data, np.inf)
return inputs_data
def create_is_nan_net(self, x_shape, x_type):
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
x = tf.compat.v1.placeholder(x_type, x_shape, 'x')
tf.raw_ops.IsNan(x=x, name='is_nan')
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_data_basic = [
dict(x_shape=[4], x_type=tf.float32),
dict(x_shape=[2, 5], x_type=tf.float32),
dict(x_shape=[3, 2, 4], x_type=tf.float32),
]
@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_is_nan_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
if ie_device == 'GPU':
pytest.xfail('104855')
if not use_new_frontend:
pytest.skip("IsNan operation is not supported via legacy frontend.")
self._test(*self.create_is_nan_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)