forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_tf_FakeQuantWithMinMaxVars.py
60 lines (51 loc) · 2.95 KB
/
test_tf_FakeQuantWithMinMaxVars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
class TestFakeQuantWithMinMaxVars(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
# generate elements so that the input tensor may contain repeating elements
assert 'inputs' in inputs_info, "Test error: inputs_info must contain `input`"
inputs_shape = inputs_info['inputs']
inputs_data = {}
inputs_data['inputs'] = np.random.randint(-10, 10, inputs_shape).astype(np.float32)
return inputs_data
def create_fake_quant_with_min_max_vars_net(self, inputs_shape, min_value, max_value, num_bits, narrow_range,
fake_quant_op):
tf.compat.v1.reset_default_graph()
with tf.compat.v1.Session() as sess:
inputs = tf.compat.v1.placeholder(tf.float32, inputs_shape, 'inputs')
min = tf.constant(min_value, dtype=tf.float32)
max = tf.constant(max_value, dtype=tf.float32)
fake_quant_op(inputs=inputs, min=min, max=max, num_bits=num_bits,
narrow_range=narrow_range)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
test_basic = [
# test FakeQuantWithMinMaxVars
dict(inputs_shape=[2, 6, 4], min_value=-3, max_value=4, num_bits=None, narrow_range=None,
fake_quant_op=tf.raw_ops.FakeQuantWithMinMaxVars),
dict(inputs_shape=[3, 2, 1, 5], min_value=-4, max_value=5, num_bits=14, narrow_range=True,
fake_quant_op=tf.raw_ops.FakeQuantWithMinMaxVars),
dict(inputs_shape=[3, 2, 4], min_value=2, max_value=4, num_bits=10, narrow_range=False,
fake_quant_op=tf.raw_ops.FakeQuantWithMinMaxVars),
dict(inputs_shape=[1, 2, 3], min_value=-6, max_value=-3, num_bits=8, narrow_range=True,
fake_quant_op=tf.raw_ops.FakeQuantWithMinMaxVars),
# test FakeQuantWithMinMaxVarsPerChannel
pytest.param(dict(inputs_shape=[2, 6, 4], min_value=[-4, -3, -5, -8], max_value=[4, 7, 9, 5], num_bits=None,
narrow_range=None,
fake_quant_op=tf.raw_ops.FakeQuantWithMinMaxVarsPerChannel),
marks=pytest.mark.xfail(reason="104822"))
]
@pytest.mark.parametrize("params", test_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_fake_quant_with_min_max_vars_basic(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend,
use_old_api):
self._test(*self.create_fake_quant_with_min_max_vars_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)