forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_tf_Eltwise.py
83 lines (62 loc) · 3.14 KB
/
test_tf_Eltwise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from common.tf_layer_test_class import CommonTFLayerTest
from common.utils.tf_utils import permute_nchw_to_nhwc
class TestEltwise(CommonTFLayerTest):
def create_eltwise_net(self, shape, operation, ir_version, use_new_frontend):
"""
Tensorflow net IR net
Inputs->Eltwise => Inputs->Eltwise
"""
import tensorflow as tf
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
tf_x_shape = shape.copy()
tf_x_shape = permute_nchw_to_nhwc(tf_x_shape, use_new_frontend)
x = tf.compat.v1.placeholder(tf.float32, tf_x_shape, 'Input')
y = tf.compat.v1.placeholder(tf.float32, tf_x_shape, 'Input') # Input_1 in graph_def
if operation == 'sum':
tf.add(x, y, name='Operation')
elif operation == 'max':
tf.maximum(x, y, name='Operation')
elif operation == 'mul':
tf.multiply(x, y, name='Operation')
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
#
# Create reference IR net
# Please, specify 'type': 'Input' for input node
# Moreover, do not forget to validate ALL layer attributes!!!
#
ref_net = None
return tf_net, ref_net
test_data = []
for operation in ['sum', 'max', 'mul']:
test_data.extend([dict(shape=[1, 224], operation=operation),
pytest.param(dict(shape=[1, 224, 224], operation=operation),
marks=pytest.mark.precommit_tf_fe),
dict(shape=[1, 3, 224, 224], operation=operation)])
@pytest.mark.parametrize("params", test_data)
@pytest.mark.nightly
def test_eltwise(self, params, ie_device, precision, ir_version, temp_dir, use_new_frontend,
use_old_api):
self._test(*self.create_eltwise_net(**params, ir_version=ir_version,
use_new_frontend=use_new_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
test_data_5D = []
for operation in ['sum', 'max', 'mul']:
test_data_5D.extend([dict(shape=[1, 3, 224, 224, 224], operation=operation)])
@pytest.mark.parametrize("params", test_data_5D)
@pytest.mark.precommit
@pytest.mark.nightly
def test_eltwise_5D_precommit(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
if ie_device == 'GPU':
pytest.skip("5D tensors is not supported on GPU")
self._test(*self.create_eltwise_net(**params, ir_version=ir_version,
use_new_frontend=use_new_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)