forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_tf_Conv2D.py
91 lines (72 loc) · 4.38 KB
/
test_tf_Conv2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright (C) 2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from common.tf_layer_test_class import CommonTFLayerTest
# Testing operation Conv2D
# Documentation: https://www.tensorflow.org/api_docs/python/tf/raw_ops/Conv2D
class TestConv2D(CommonTFLayerTest):
# input_shape - should be an array, shape of input tensor in format [batch, height, width, channels]
# input_filter - should be an array, defines a filter
# input_strides - should be an array, defines strides of a sliding window to use
# input_padding - should be a string, defines padding algorithm
# ir_version - common parameter
# use_new_frontend - common parameter
def create_conv2d_placeholder_const_net(self, input_shape, input_filter, input_strides, input_padding, dilations,
ir_version, use_new_frontend):
"""
Tensorflow net IR net
Placeholder->Conv2D => Placeholder->Transpose->Convolution->Transpose
/ /
Placeholder-/ Placeholder->Transpose-/
"""
import tensorflow as tf
if dilations is None:
dilations = [1, 1, 1, 1] # default value regarding Documentation
# Batch Height Width Channel
expl_paddings = [0, 0, 1, 1, 1, 1, 0, 0]
if input_padding == 'EXPLICIT' and use_new_frontend == False:
pytest.xfail(reason="100300")
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
tf_input = tf.compat.v1.placeholder(tf.float32, input_shape, "InputShape")
tf_filter = tf.compat.v1.placeholder(tf.float32, input_filter, "InputFilter")
if input_padding != 'EXPLICIT':
tf.raw_ops.Conv2D(input=tf_input, filter=tf_filter, strides=input_strides, padding=input_padding,
dilations=dilations)
else:
tf.raw_ops.Conv2D(input=tf_input, filter=tf_filter, strides=input_strides, padding=input_padding,
explicit_paddings=expl_paddings, dilations=dilations)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
ref_net = None
return tf_net, ref_net
test_data = [
dict(input_shape=[1, 10, 10, 1], input_filter=[3, 3, 1, 1], input_strides=[1, 1, 1, 1], dilations=None),
dict(input_shape=[1, 10, 10, 2], input_filter=[3, 3, 2, 2], input_strides=[1, 1, 1, 1], dilations=None),
dict(input_shape=[1, 10, 10, 2], input_filter=[3, 3, 2, 1], input_strides=[1, 1, 1, 1], dilations=None),
dict(input_shape=[1, 10, 10, 3], input_filter=[2, 2, 3, 3], input_strides=[1, 1, 1, 1], dilations=None),
dict(input_shape=[1, 16, 16, 3], input_filter=[2, 2, 3, 3], input_strides=[1, 2, 2, 1], dilations=None),
dict(input_shape=[1, 10, 10, 4], input_filter=[2, 2, 4, 2], input_strides=[1, 1, 1, 1], dilations=None),
dict(input_shape=[1, 16, 16, 3], input_filter=[2, 2, 3, 3], input_strides=[1, 2, 2, 1], dilations=[1, 2, 2, 1]),
pytest.param(
dict(input_shape=[1, 224, 224, 3], input_filter=[4, 4, 3, 2], input_strides=[1, 2, 2, 1],
dilations=[1, 2, 2, 1]),
marks=pytest.mark.precommit_tf_fe),
# with four groups
pytest.param(
dict(input_shape=[2, 224, 224, 4], input_filter=[4, 4, 1, 12], input_strides=[1, 2, 2, 1],
dilations=[1, 2, 2, 1]),
marks=pytest.mark.precommit_tf_fe)
]
@pytest.mark.parametrize("params", test_data)
@pytest.mark.parametrize("padding", ['EXPLICIT', 'SAME', 'VALID'])
@pytest.mark.nightly
def test_conv2d_placeholder_const(self, params, padding, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
if ie_device == 'GPU':
pytest.xfail('104862')
self._test(*self.create_conv2d_placeholder_const_net(**params, input_padding=padding, ir_version=ir_version,
use_new_frontend=use_new_frontend),
ie_device, precision, ir_version, input_padding=padding, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)