forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_tf_ArgMinMax.py
70 lines (55 loc) · 2.79 KB
/
test_tf_ArgMinMax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright (C) 2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
from common.tf_layer_test_class import CommonTFLayerTest
# Testing operation ArgMin, ArgMax (Initial Implementation)
# Documentation: https://www.tensorflow.org/api_docs/python/tf/raw_ops/ArgMin
# https://www.tensorflow.org/api_docs/python/tf/raw_ops/ArgMax
class TestArgMinMax(CommonTFLayerTest):
# input_shape - should be an array
# dimension - dimension to be used, for vector should be 0
# op_type - type of testing operation
# ir_version - common parameter
# use_new_frontend - common parameter
def create_argminmax_placeholder_const_net(self, input_shape, dimension, op_type, ir_version, use_new_frontend):
"""
Tensorflow net IR net
Placeholder->op_type => Placeholder->TopK->Squeeze
/ / /
Const-------/ Const-------/-----/
"""
import tensorflow as tf
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
op_type_to_tf = {
'ArgMax': tf.raw_ops.ArgMax,
'ArgMin': tf.raw_ops.ArgMin,
}
tf_input_shape = input_shape.copy()
tf_input = tf.compat.v1.placeholder(tf.float32, tf_input_shape, 'Input')
tf_dimension = tf.constant(dimension)
op_type_to_tf[op_type](input = tf_input, dimension = tf_dimension)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
ref_net = None
return tf_net, ref_net
test_data = [
dict(input_shape=[5], dimension=0), #Simple test of vector
pytest.param(
dict(input_shape=[2, 3], dimension=1), #Simple test
marks=pytest.mark.precommit_tf_fe),
dict(input_shape=[2, 3, 3, 4], dimension=2), #Simple test with possible nchw/nhcw
]
@pytest.mark.parametrize("params", test_data)
@pytest.mark.parametrize("op_type", ['ArgMin', 'ArgMax'])
@pytest.mark.precommit
@pytest.mark.nightly
def test_argminmax_placeholder_const(self, params, op_type, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
self._test(*self.create_argminmax_placeholder_const_net(**params, op_type=op_type,
ir_version=ir_version,
use_new_frontend=use_new_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)