
Regression Testing for Athena++



Introduction Running Writing Discussion

Code testing

Reasons
Keep developers from breaking each other’s code
Or their own code
Or users’ expectations

Styles
Unit testing: make sure each component works
individually

Hard → not implemented
Regression testing: make sure the code as a whole does
not lose functionality

Easy → covered below



Introduction Running Writing Discussion

Directory structure

athena/
tst/

regression/
scripts/

tests/ tests go here
newtonian/
sr/
gr/

utils/ helper scripts
data/ permanent storage
obj/
bin/ regularly deleted

vis/
python/ tools for reading data



Introduction Running Writing Discussion

How to run regression tests

Go to regression test directory
cd tst/regression

Run all tests
python run_tests.py

Or run suites of tests
python run_tests.py sr gr

Or run individual tests
python run_tests.py sr/hydro_shocks_hlle



Introduction Running Writing Discussion

What tests tell you

Hopefully “passed” for each test

Sometimes “failed”
No further message: test script returned failure
“unexpected failure in . . . ”

prepare(): configuration/compilation
run(): Athena++ ran but aborted with error
analyze(): problem reading output data

Final summary at end (“25 out of 25 tests passed”)



Introduction Running Writing Discussion

Writing tests: Location

Directories under regression/scripts/tests/
correspond to suites

Examples: GR, viscosity, MPI
All tests must be in a suite
Suites cannot be nested

Each test is a single Python file in such a directory

If creating a new directory, must include __init__.py

(empty file)



Introduction Running Writing Discussion

Writing tests: Making a new test

Follow regression/scripts/tests/example.py

Three functions must be defined: prepare(), run(),
analyze()

Reason: unexpected catastrophic errors can be traced
better

Use functions in
regression/scripts/utils/athena.py to interface
with Athena++



Introduction Running Writing Discussion

Writing tests: Compiling/configuring

import scripts.utils.athena as athena

def prepare():
athena.configure(’g’, ’t’,

prob=’shock_tube_rel’,
coord=’minkowski’)

athena.make()

Equivalent to

python configure.py -gt \
--prob=shock_tube_rel \
--coord=minkowski

make clean
make



Introduction Running Writing Discussion

Writing tests: Running Athena++
import scripts.utils.athena as athena

def run():
arguments = [

’job/problem_id=gr_shock_tube’,
’output1/file_type=vtk’,
’output1/variable=cons’,
’output1/dt=0.4’,
’time/cfl_number=0.4’,
’time/tlim=0.4’,
’mesh/nx1=400’]

athena.run(’hydro_sr/athinput.mb_1’, arguments)

Equivalent to
cd bin
./athena -i ../inputs/hydro_sr/athinput.mb_1 \

job/problem_id=gr_shock_tube ...



Introduction Running Writing Discussion

Writing tests: Checking the output

import sys
sys.path.insert(0, ’../../vis/python’)
import athena_read

def analyze():

ref_file = ’data/sr_hydro_shock1_hlle.vtk’
x_ref,_,_,data_ref = athena_read.vtk(ref_file)
mx_ref = data_ref[’mom’][0,0,:,0]

new_file = \
’bin/gr_shock_tube.block0.out1.00001.vtk’

x_new,_,_,data_new = athena_read.vtk(new_file)
mx_new = data_new[’mom’][0,0,:,0]

...



Introduction Running Writing Discussion

Writing tests: Checking the output

import numpy as np
import scripts.utils.comparison as comparison

def analyze():
...

error_abs_mx = comparison.l1_diff(x_ref, mx_ref,
x_new, mx_new)

error_rel_mx = error_abs_mx \
/ comparison.l1_norm(x_ref, mx_ref)

if error_rel_mx > 0.01 or np.isnan(error_rel_mx):
return False

return True

Must return True (test passes) or False



Introduction Running Writing Discussion

Writing tests: Notes

regression/bin/ is deleted before and after each test
Tests should not (permanently) interfere with other
directories
Static data can be stored in regression/data/

Part of repository – do not make files too large
Python utility scripts for analyzing datasets in
regression/scripts/utils/

Varieties of regression tests
Output matches precomputed values
Convergence tests
Compilation-only



Introduction Running Writing Discussion

Discussion

What tests do we need?
The problem of permutations

How portable should tests be?
Currently runs on any machine
Should tests cover icc or multiple nodes?
If so, should they be part of the default test suite?

Should code be committed that breaks tests?


	Introduction
	Running
	Writing
	Discussion

