-
Notifications
You must be signed in to change notification settings - Fork 0
/
NEAT_visual.py
163 lines (124 loc) · 4.82 KB
/
NEAT_visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import warnings
import graphviz
import matplotlib.pyplot as plt
import numpy as np
# def plot_stats(statistics, ylog=False, view=False, filename='avg_fitness.svg'):
# """ Plots the population's average and best fitness. """
# if plt is None:
# warnings.warn("This display is not available due to a missing optional dependency (matplotlib)")
# return
# generation = range(len(statistics.most_fit_genomes))
# best_fitness = [c.fitness for c in statistics.most_fit_genomes]
# avg_fitness = np.array(statistics.get_fitness_mean())
# stdev_fitness = np.array(statistics.get_fitness_stdev())
# plt.plot(generation, avg_fitness, 'b-', label="average")
# plt.plot(generation, avg_fitness - stdev_fitness, 'g-.', label="-1 sd")
# plt.plot(generation, avg_fitness + stdev_fitness, 'g-.', label="+1 sd")
# plt.plot(generation, best_fitness, 'r-', label="best")
# plt.title("Population's average and best fitness")
# plt.xlabel("Generations")
# plt.ylabel("Fitness")
# plt.grid()
# plt.legend(loc="best")
# if ylog:
# plt.gca().set_yscale('symlog')
# plt.savefig(filename)
# if view:
# plt.show()
# plt.close()
# def plot_spikes(spikes, view=False, filename=None, title=None):
# """ Plots the trains for a single spiking neuron. """
# t_values = [t for t, I, v, u, f in spikes]
# v_values = [v for t, I, v, u, f in spikes]
# u_values = [u for t, I, v, u, f in spikes]
# I_values = [I for t, I, v, u, f in spikes]
# f_values = [f for t, I, v, u, f in spikes]
# fig = plt.figure()
# plt.subplot(4, 1, 1)
# plt.ylabel("Potential (mv)")
# plt.xlabel("Time (in ms)")
# plt.grid()
# plt.plot(t_values, v_values, "g-")
# if title is None:
# plt.title("Izhikevich's spiking neuron model")
# else:
# plt.title("Izhikevich's spiking neuron model ({0!s})".format(title))
# plt.subplot(4, 1, 2)
# plt.ylabel("Fired")
# plt.xlabel("Time (in ms)")
# plt.grid()
# plt.plot(t_values, f_values, "r-")
# plt.subplot(4, 1, 3)
# plt.ylabel("Recovery (u)")
# plt.xlabel("Time (in ms)")
# plt.grid()
# plt.plot(t_values, u_values, "r-")
# plt.subplot(4, 1, 4)
# plt.ylabel("Current (I)")
# plt.xlabel("Time (in ms)")
# plt.grid()
# plt.plot(t_values, I_values, "r-o")
# if filename is not None:
# plt.savefig(filename)
# if view:
# plt.show()
# plt.close()
# fig = None
# # return fig
# def plot_species(statistics, view=False, filename='speciation.svg'):
# """ Visualizes speciation throughout evolution. """
# if plt is None:
# warnings.warn("This display is not available due to a missing optional dependency (matplotlib)")
# return
# species_sizes = statistics.get_species_sizes()
# num_generations = len(species_sizes)
# curves = np.array(species_sizes).T
# fig, ax = plt.subplots()
# ax.stackplot(range(num_generations), *curves)
# plt.title("Speciation")
# plt.ylabel("Size per Species")
# plt.xlabel("Generations")
# plt.savefig(filename)
# if view:
# plt.show()
# plt.close()
def draw_net(config, genome, view=False, filename=None, node_names=None, show_disabled=True, prune_unused=False,
node_colors=None, fmt='pdf'):
node_names = {}
node_colors = {}
node_attrs = {
'shape': 'circle',
'fontsize': '9',
'height': '0.2',
'width': '0.2'}
dot = graphviz.Digraph(format=fmt, node_attr=node_attrs)
inputs = set()
for k in config.genome_config.input_keys:
inputs.add(k)
name = node_names.get(k, str(k))
input_attrs = {'style': 'filled', 'shape': 'box', 'fillcolor': node_colors.get(k, 'lightgray')}
dot.node(name, _attributes=input_attrs)
outputs = set()
for k in config.genome_config.output_keys:
outputs.add(k)
name = node_names.get(k, str(k))
node_attrs = {'style': 'filled', 'fillcolor': node_colors.get(k, 'lightblue')}
dot.node(name, _attributes=node_attrs)
used_nodes = set(genome.nodes.keys())
for n in used_nodes:
if n in inputs or n in outputs:
continue
attrs = {'style': 'filled',
'fillcolor': node_colors.get(n, 'white')}
dot.node(str(n), _attributes=attrs)
for cg in genome.connections.values():
if cg.enabled or show_disabled:
input, output = cg.key
a = node_names.get(input, str(input))
b = node_names.get(output, str(output))
style = 'solid'
color = 'green' if cg.theta > 0 else 'red'
width = str(0.1 + abs(cg.theta / 5.0))
dot.edge(a, b, _attributes={'style': style, 'color': color, 'penwidth': width})
dot.render(filename, view=view)
return dot