forked from wri/carbon-budget
-
Notifications
You must be signed in to change notification settings - Fork 0
/
constants_and_names.py
763 lines (554 loc) · 42.8 KB
/
constants_and_names.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
import os
import multiprocessing
import universal_util as uu
import datetime
######## ########
##### Constants #####
######## ########
# Model version
version = '1.2.1'
version_filename = version.replace('.', '_')
# Number of years of tree cover loss. If input loss raster is changed, this must be changed, too.
loss_years = 20
# Number of years in tree cover gain. If input gain raster is changed, this must be changed, too.
gain_years = 12
# Biomass to carbon ratio for aboveground, belowground, and deadwood in non-mangrove forests (planted and non-planted)
biomass_to_c_non_mangrove = 0.47
# Biomass to carbon ratio for litter in non-mangrove forests (planted and non-planted).
# From IPCC guidelines chapter 2, pdf page 23.
biomass_to_c_non_mangrove_litter = 0.37
# Biomass to carbon ratio for mangroves (IPCC wetlands supplement table 4.2)
biomass_to_c_mangrove = 0.45
# Carbon to CO2 ratio
# Needs the decimal places in order to be cast as a float
c_to_co2 = 44.0/12.0
# Canopy cover threshold for inclusion in forest extent
canopy_threshold = 30
# Number of metric tonnes in a megatonne
tonnes_to_megatonnes = 1000000
# Belowground to aboveground biomass ratios. Mangrove values are from Table 4.5 of IPCC wetland supplement.
# Non-mangrove value is the average slope of the AGB:BGB relationship in Figure 3 of Mokany et al. 2006.
below_to_above_non_mang = 0.26
below_to_above_trop_wet_mang = 0.49
below_to_above_trop_dry_mang = 0.29
below_to_above_subtrop_mang = 0.96
# Litter to aboveground biomass ratios for mangroves. Calculated from IPCC Wetland Supplement Tables 4.2, 4.3, and 4.7
# but elaborated on here: https://3.basecamp.com/3656819/buckets/7989024/todos/1235627617
litter_to_above_trop_wet_mang = 0.008
litter_to_above_trop_dry_mang = 0.0169
litter_to_above_subtrop_mang = 0.0169
# Deadwood to aboveground biomass ratios for mangroves. Calculated from IPCC Wetland Supplement Tables 4.2, 4.3, and 4.7
# but elaborated on here: https://3.basecamp.com/3656819/buckets/7989024/todos/1235627617
deadwood_to_above_trop_wet_mang = 0.123
deadwood_to_above_trop_dry_mang = 0.258
deadwood_to_above_subtrop_mang = 0.258
# The size of a Hansen loss/Landsat pixel, in decimal degrees (approximately 30x30 m at the equator)
Hansen_res = 0.00025
# Number of rows and columns of pixels in a 10x10 degree tile
tile_width = 10 / Hansen_res
tile_height = 10 / Hansen_res
# Pixel window sizes for aggregated rasters
agg_pixel_window = int(tile_width * 0.004)
# m2 per hectare
m2_per_ha = 100 * 100
# Number of processors on the machine being used
count = multiprocessing.cpu_count()
########## ##########
##### File names and directories #####
########## ##########
# Directory for the climate model files on s3
s3_base_dir = 's3://gfw2-data/climate/carbon_model/'
# Directory for all tiles in the Docker container
docker_base_dir = '/usr/local/tiles/'
docker_tmp = '/usr/local/tmp'
docker_app = '/usr/local/app'
c_emis_compile_dst = '{0}/emissions/cpp_util'.format(docker_app)
# Model log
start = datetime.datetime.now()
date = datetime.datetime.now()
date_formatted = date.strftime("%Y_%m_%d__%H_%M_%S")
model_log_dir = os.path.join(s3_base_dir, 'model_logs/v{}/'.format(version))
model_log = "flux_model_log_{}.txt".format(date_formatted)
# Blank created tile list txt
# Stores the tile names for blank tiles. These tiles will be deleted at the end of the script so that they
# don't get counted as actual tiles of this type
blank_tile_txt = "blank_tiles.txt"
# Tile summary spreadsheets
tile_stats_pattern = 'tile_stats_model'
tile_stats_dir = os.path.join(s3_base_dir, 'tile_stats/')
######
### Model extent
######
pattern_model_extent = 'model_extent'
model_extent_dir = os.path.join(s3_base_dir, 'model_extent/standard/20210223/')
######
### Biomass tiles
######
## Biomass in 2000
# Woods Hole aboveground biomass 2000 version 4 tiles
pattern_WHRC_biomass_2000_unmasked = "t_aboveground_biomass_ha_2000"
WHRC_biomass_2000_unmasked_dir = 's3://gfw2-data/climate/WHRC_biomass/WHRC_V4/Processed/'
##### This is deprecated but there are still some references to it in the Brazil sensitivity analysis
# # Woods Hole aboveground biomass 2000 version 4 tiles without mangrove or planted forest pixels
# pattern_WHRC_biomass_2000_non_mang_non_planted = "t_aboveground_biomass_ha_2000_non_mangrove_non_planted"
# WHRC_biomass_2000_non_mang_non_planted_dir = os.path.join(s3_base_dir, 'biomass_non_mangrove_non_planted/standard/20190225/')
# Raw Lola Fatoyinbo aboveground mangrove biomass in the year 2000 rasters
mangrove_biomass_raw_dir = os.path.join(s3_base_dir, 'mangrove_biomass/raw_from_Nathan_Thomas_20190215/')
mangrove_biomass_raw_file = 'MaskedSRTMCountriesAGB_V2_Tiff.zip'
# Processed mangrove aboveground biomass in the year 2000
pattern_mangrove_biomass_2000 = 'mangrove_agb_t_ha_2000'
mangrove_biomass_2000_dir = os.path.join(s3_base_dir, 'mangrove_biomass/processed/standard/20190220/')
pattern_mangrove_biomass_2000_rewindow = 'mangrove_agb_t_ha_2000_rewindow'
mangrove_biomass_2000_rewindow_dir = os.path.join(s3_base_dir, 'rewindow/mangrove_biomass/20210621/')
######
### Miscellaneous inputs
######
# The area of each pixel in m^2
pattern_pixel_area = 'hanson_2013_area'
pixel_area_dir = 's3://gfw2-data/analyses/area_28m/'
pattern_pixel_area_rewindow = 'hanson_2013_area_rewindow'
pixel_area_rewindow_dir = os.path.join(s3_base_dir, 'rewindow/pixel_area/20210621/')
# Spreadsheet with annual gain rates
gain_spreadsheet = 'gain_rate_continent_ecozone_age_20200820.xlsx'
gain_spreadsheet_dir = os.path.join(s3_base_dir, 'removal_rate_tables/')
# Annual Hansen loss tiles (2001-2020)
pattern_loss = 'GFW2020'
loss_dir = 's3://gfw2-data/forest_change/hansen_2020/'
# Hansen gain tiles (2001-2012)
pattern_gain = 'Hansen_GFC2015_gain'
gain_dir = 's3://gfw2-data/forest_change/tree_cover_gain/gaindata_2012/'
pattern_gain_rewindow = 'Hansen_GFC2015_gain_rewindow'
gain_rewindow_dir = os.path.join(s3_base_dir, 'rewindow/tree_cover_gain_2001_2012/20210621/')
# Tree cover density 2000 tiles
pattern_tcd = 'Hansen_GFC2014_treecover2000'
tcd_dir = 's3://gfw2-data/forest_cover/2000_treecover/'
pattern_tcd_rewindow = 'Hansen_GFC2014_treecover2000_rewindow'
tcd_rewindow_dir = os.path.join(s3_base_dir, 'rewindow/2000_treecover_density/20210621/')
# Intact forest landscape 2000 tiles
pattern_ifl = 'res_ifl_2000'
ifl_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/ifl_2000/')
# Primary forest 2001 raw rasters
primary_raw_dir = 's3://gfw2-data/forest_cover/primary_forest/jan_2019/'
# Primary forest/IFL merged tiles
pattern_ifl_primary = 'ifl_2000_primary_2001_merged'
ifl_primary_processed_dir = os.path.join(s3_base_dir, 'ifl_primary_merged/processed/20200724/')
# Processed FAO ecozone shapefile
cont_ecozone_shp = 'fao_ecozones_fra_2000_continents_assigned_dissolved_FINAL_20180906.zip'
# Directory and names for the continent-ecozone tiles, raw and processed
pattern_cont_eco_raw = 'fao_ecozones_continents_raw'
pattern_cont_eco_processed = 'fao_ecozones_continents_processed'
cont_eco_s3_zip = os.path.join(s3_base_dir, 'fao_ecozones/fao_ecozones_fra_2000_continents_assigned_dissolved_FINAL_20180906.zip')
cont_eco_zip = 'fao_ecozones_fra_2000_continents_assigned_dissolved_FINAL_20180906.zip'
cont_eco_raw_dir = os.path.join(s3_base_dir, 'fao_ecozones/ecozone_continent/20190116/raw/')
cont_eco_dir = os.path.join(s3_base_dir, 'fao_ecozones/ecozone_continent/20190116/processed/')
# Plantation type: palm oil (code=1), wood fiber (code=2), and other (code=3)
pattern_planted_forest_type_unmasked = 'plantation_type_oilpalm_woodfiber_other_unmasked'
planted_forest_type_unmasked_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/plantation_type/standard/20200730/')
# Peat mask inputs
peat_unprocessed_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/peatlands/raw/')
cifor_peat_file = 'cifor_peat_mask.tif'
jukka_peat_zip = 'Jukka_peatland.zip'
jukka_peat_shp = 'peatland_drainage_proj.shp'
soilgrids250_peat_url = 'https://files.isric.org/soilgrids/latest/data/wrb/MostProbable/' #Value 14 is histosol according to https://files.isric.org/soilgrids/latest/data/wrb/MostProbable.qml
pattern_soilgrids_most_likely_class = 'geotiff'
# Peat mask
pattern_peat_mask = 'peat_mask_processed'
peat_mask_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/peatlands/processed/20200807/')
# Climate zone
climate_zone_raw_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/climate_zone/raw/')
climate_zone_raw = 'climate_zone.tif'
pattern_climate_zone = 'climate_zone_processed'
climate_zone_processed_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/climate_zone/processed/20200724/')
# Pre-2000 plantations
plant_pre_2000_raw_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/IDN_MYS_plantation_pre_2000/raw/')
pattern_plant_pre_2000_raw = 'plant_est_2000_or_earlier'
pattern_plant_pre_2000 = 'plantation_2000_or_earlier_processed'
plant_pre_2000_processed_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/IDN_MYS_plantation_pre_2000/processed/20200724/')
# Drivers of tree cover loss
drivers_raw_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/tree_cover_loss_drivers/raw/')
pattern_drivers_raw = 'Final_Classification_2020__reproj_nearest_0-005_0-005_deg__20210323.tif'
pattern_drivers = 'tree_cover_loss_driver_processed'
drivers_processed_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/tree_cover_loss_drivers/processed/drivers_2020/20210323/')
# Burn year
burn_area_raw_ftp = 'sftp://fuoco.geog.umd.edu/data/MODIS/C6/MCD64A1/HDF/' # per https://modis-fire.umd.edu/files/MODIS_C6_BA_User_Guide_1.3.pdf
burn_year_hdf_raw_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/burn_year/raw_hdf/')
burn_year_stacked_hv_tif_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/burn_year/stacked_hv_tifs/')
burn_year_warped_to_Hansen_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/burn_year/burn_year_10x10_clip/')
pattern_burn_year = "burnyear_with_Hansen_loss"
burn_year_dir = os.path.join(s3_base_dir, 'other_emissions_inputs/burn_year/burn_year_with_Hansen_loss/20210218/')
######
### Plantation processing
######
gadm_dir = 's3://gfw2-data/alerts-tsv/gis_source/'
gadm_zip = 'gadm_3_6_adm2_final.zip'
gadm_shp = 'gadm_3_6_adm2_final.shp'
gadm_iso = 'gadm_3_6_with_planted_forest_iso.shp'
gadm_path = os.path.join(gadm_dir, gadm_zip)
gadm_plant_1x1_index_dir = os.path.join(s3_base_dir, 'gadm_plantation_1x1_tile_index/')
pattern_gadm_1x1_index = 'gadm_index_1x1'
pattern_plant_1x1_index = 'plantation_index_1x1'
# Countries with planted forests in them according to the planted forest geodatabase
plantation_countries = [
'ARG', 'VNM', 'VEN', 'THA', 'RWA', 'PNG', 'PHL', 'PAN', 'NIC', 'IND', 'HND', 'CRI', 'COD', 'COL',
'GAB', 'GHA', 'GTM', 'IDN', 'KEN', 'KHM', 'PRK', 'KOR', 'LBR', 'LKA', 'MEX', 'MMR', 'MWI', 'MGA',
'NPL', 'NZL', 'PAK', 'PER', 'SLB', 'URY', 'USA', 'ZAF', 'AUS', 'BRA', 'CHL', 'CHN', 'CIV', 'CMR',
'JPN', 'MYS', 'ECU',
'AUT', 'BEL', 'BGR', 'HRV', 'CYP', 'CZE', 'DNK', 'EST', 'FIN', 'FRA', 'DEU', 'GRC', 'HUN', 'IRL',
'ITA', 'LVA', 'LTU', 'LUX', 'MLT', 'NLD', 'POL', 'PRT', 'ROU', 'SVK', 'SVN', 'ESP', 'SWE', 'GBR',
'ALA', 'ALB', 'ARM', 'AZE', 'BIH', 'BLR', 'CHE', 'GEO', 'IRQ', 'ISL', 'MDA', 'MKD', 'MNE',
'NGA', 'NOR', 'SRB', 'SYR', 'TUR', 'UKR', 'XKO'
]
######
### Removals
######
### Forest age category
# US forest age category tiles
name_age_cat_natrl_forest_US_raw = 'forest_age_category_US__0_20__20_100__100plus__20200723.tif'
age_cat_natrl_forest_US_raw_dir = os.path.join(s3_base_dir, 'forest_age_category_natural_forest_US/raw/20200723/')
pattern_age_cat_natrl_forest_US = 'forest_age_category_natural_forest_US'
age_cat_natrl_forest_US_dir = os.path.join(s3_base_dir, 'forest_age_category_natural_forest_US/processed/standard/20200724/')
# Age categories over entire model extent, as a precursor to assigning IPCC default removal rates
pattern_age_cat_IPCC = 'forest_age_category_IPCC__1_young_2_mid_3_old'
age_cat_IPCC_dir = os.path.join(s3_base_dir, 'forest_age_category_IPCC/standard/20210223/')
### US-specific removal precursors
name_FIA_regions_raw = 'Forest_Management_Regions_Final_Integrated_from_Thailynn_Munroe_via_Slack_20200723.tif'
FIA_regions_raw_dir = os.path.join(s3_base_dir, 'US_FIA_region/raw/20200723/')
pattern_FIA_regions_processed = 'FIA_regions_processed'
FIA_regions_processed_dir = os.path.join(s3_base_dir, 'US_FIA_region/processed/20200724/')
name_FIA_forest_group_raw = 'forest_group_composite_set_no_data_20191223.tif'
FIA_forest_group_raw_dir = os.path.join(s3_base_dir, 'US_forest_group/intermediate/')
pattern_FIA_forest_group_processed = 'FIA_forest_group_processed'
FIA_forest_group_processed_dir = os.path.join(s3_base_dir, 'US_forest_group/processed/20200724/')
table_US_removal_rate = 'ICLEI R factors_livebiomass_all_nat_forest_types_withSD__20200831.xlsx'
US_removal_rate_table_dir = os.path.join(s3_base_dir, 'removal_rate_tables/')
### Annual carbon gain rates that are precursors for composite annual removal factor
# Annual aboveground and belowground carbon gain rate for planted forests, with gain rates everywhere inside the plantation boundaries (includes mangrove pixels)
pattern_annual_gain_AGC_BGC_planted_forest_unmasked = 'annual_gain_rate_AGC_BGC_t_ha_planted_forest_unmasked'
annual_gain_AGC_BGC_planted_forest_unmasked_dir = os.path.join(s3_base_dir, 'annual_gain_rate_AGC_BGC_planted_forest_unmasked/standard/20200730/')
# Annual aboveground carbon gain rate for <20 year secondary, non-mangrove, non-planted natural forests (raw)
name_annual_gain_AGC_natrl_forest_young_raw = 'sequestration_rate__mean__aboveground__full_extent__Mg_C_ha_yr.tif'
annual_gain_AGC_natrl_forest_young_raw_URL = 'http://gfw2-data.s3.amazonaws.com/climate/carbon_seqr_AI4E/Nature_publication_final_202007/full_extent/sequestration_rate__mean__aboveground__full_extent__Mg_C_ha_yr.tif'
# Annual aboveground carbon gain rate for young (<20 year secondary), non-mangrove, non-planted natural forests
pattern_annual_gain_AGC_natrl_forest_young = 'annual_gain_rate_AGC_t_ha_natural_forest_young_secondary'
annual_gain_AGC_natrl_forest_young_dir = os.path.join(s3_base_dir, 'annual_gain_rate_AGC_natural_forest_young_secondary/standard/20200728/')
# Annual aboveground+belowground carbon gain rate for natural European forests (raw)
name_annual_gain_AGC_BGC_natrl_forest_Europe_raw = 'annual_gain_rate_AGC_BGC_t_ha_natural_forest_raw_Europe.tif'
annual_gain_AGC_BGC_natrl_forest_Europe_raw_dir = os.path.join(s3_base_dir, 'annual_gain_rate_AGC_BGC_natural_forest_Europe/raw/standard/20200722/')
# Annual aboveground+belowground carbon gain rate for natural European forests (processed tiles)
# https://www.efi.int/knowledge/maps/treespecies
pattern_annual_gain_AGC_BGC_natrl_forest_Europe = 'annual_gain_rate_AGC_BGC_t_ha_natural_forest_Europe'
annual_gain_AGC_BGC_natrl_forest_Europe_dir = os.path.join(s3_base_dir, 'annual_gain_rate_AGC_BGC_natural_forest_Europe/processed/standard/20200724/')
# Annual aboveground+belowground carbon gain rate for natural US forests (processed tiles)
pattern_annual_gain_AGC_BGC_natrl_forest_US = 'annual_removal_factor_AGC_BGC_Mg_ha_natural_forest_US'
annual_gain_AGC_BGC_natrl_forest_US_dir = os.path.join(s3_base_dir, 'annual_gain_rate_AGC_BGC_natural_forest_US/processed/standard/20200831/')
### Annual biomass gain rates
# Annual aboveground biomass gain rate for mangroves
pattern_annual_gain_AGB_mangrove = 'annual_removal_factor_AGB_Mg_ha_mangrove'
annual_gain_AGB_mangrove_dir = os.path.join(s3_base_dir, 'annual_removal_factor_AGB_mangrove/standard/20200824/')
# Annual belowground biomass gain rate for mangroves
pattern_annual_gain_BGB_mangrove = 'annual_removal_factor_BGB_Mg_ha_mangrove'
annual_gain_BGB_mangrove_dir = os.path.join(s3_base_dir, 'annual_removal_factor_BGB_mangrove/standard/20200824/')
# Annual aboveground biomass gain rate using IPCC default removal rates
pattern_annual_gain_AGB_IPCC_defaults = 'annual_removal_factor_AGB_Mg_ha_IPCC_defaults_all_ages'
annual_gain_AGB_IPCC_defaults_dir = os.path.join(s3_base_dir, 'annual_removal_factor_AGB_IPCC_defaults_all_ages/standard/20210223/')
# Annual aboveground biomass gain rate using IPCC default removal rates
pattern_annual_gain_BGB_IPCC_defaults = 'annual_removal_factor_BGB_Mg_ha_IPCC_defaults_all_ages'
annual_gain_BGB_IPCC_defaults_dir = os.path.join(s3_base_dir, 'annual_removal_factor_BGB_IPCC_defaults_all_ages/standard/20210223/')
# Annual aboveground gain rate for all forest types
pattern_annual_gain_AGC_all_types = 'annual_removal_factor_AGC_Mg_ha_all_forest_types'
annual_gain_AGC_all_types_dir = os.path.join(s3_base_dir, 'annual_removal_factor_AGC_all_forest_types/standard/20210223/')
# Annual belowground gain rate for all forest types
pattern_annual_gain_BGC_all_types = 'annual_removal_factor_BGC_Mg_ha_all_forest_types'
annual_gain_BGC_all_types_dir = os.path.join(s3_base_dir, 'annual_removal_factor_BGC_all_forest_types/standard/20210223/')
# Annual aboveground+belowground gain rate for all forest types
pattern_annual_gain_AGC_BGC_all_types = 'annual_removal_factor_AGC_BGC_Mg_ha_all_forest_types'
annual_gain_AGC_BGC_all_types_dir = os.path.join(s3_base_dir, 'annual_removal_factor_AGC_BGC_all_forest_types/standard/20210223/')
### Removal forest types (sources)
# Forest type used in removals model
pattern_removal_forest_type = 'removal_forest_type'
removal_forest_type_dir = os.path.join(s3_base_dir, 'removal_forest_type/standard/20210223/')
# Removal model forest type codes
mangrove_rank = 6
europe_rank = 5
planted_forest_rank = 4
US_rank = 3
young_natural_rank = 2
old_natural_rank = 1
### Number of years of carbon removal (gain year count)
# Number of gain years for all forest types
pattern_gain_year_count = 'gain_year_count_all_forest_types'
gain_year_count_dir = os.path.join(s3_base_dir, 'gain_year_count_all_forest_types/standard/20210224/')
### Cumulative carbon dioxide removals
# Gross aboveground removals for all forest types
pattern_cumul_gain_AGCO2_all_types = 'gross_removals_AGCO2_Mg_ha_all_forest_types_2001_{}'.format(loss_years)
cumul_gain_AGCO2_all_types_dir = os.path.join(s3_base_dir, 'gross_removals_AGCO2_all_forest_types/standard/per_hectare/20210224/')
# Gross belowground removals for all forest types
pattern_cumul_gain_BGCO2_all_types = 'gross_removals_BGCO2_Mg_ha_all_forest_types_2001_{}'.format(loss_years)
cumul_gain_BGCO2_all_types_dir = os.path.join(s3_base_dir, 'gross_removals_BGCO2_all_forest_types/standard/per_hectare/20210224/')
# Gross aboveground and belowground removals for all forest types in all pixels
pattern_cumul_gain_AGCO2_BGCO2_all_types = 'gross_removals_AGCO2_BGCO2_Mg_ha_all_forest_types_2001_{}'.format(loss_years)
cumul_gain_AGCO2_BGCO2_all_types_dir = os.path.join(s3_base_dir, 'gross_removals_AGCO2_BGCO2_all_forest_types/standard/full_extent/per_hectare/20210224/')
# Gross aboveground and belowground removals for all forest types in pixels within forest extent
pattern_cumul_gain_AGCO2_BGCO2_all_types_forest_extent = 'gross_removals_AGCO2_BGCO2_Mg_ha_all_forest_types_forest_extent_2001_{}'.format(loss_years)
cumul_gain_AGCO2_BGCO2_all_types_forest_extent_dir = os.path.join(s3_base_dir, 'gross_removals_AGCO2_BGCO2_all_forest_types/standard/forest_extent/per_hectare/20210225/')
######
### Carbon emitted_pools
######
### Non-biomass inputs to carbon emitted_pools
# FAO ecozones as boreal/temperate/tropical
pattern_fao_ecozone_raw = 'fao_ecozones_bor_tem_tro_20180619.zip'
fao_ecozone_raw_dir = os.path.join(s3_base_dir, 'inputs_for_carbon_pools/raw/{}'.format(pattern_fao_ecozone_raw))
pattern_bor_tem_trop_intermediate = 'fao_ecozones_bor_tem_tro_intermediate'
pattern_bor_tem_trop_processed = 'fao_ecozones_bor_tem_tro_processed'
bor_tem_trop_processed_dir = os.path.join(s3_base_dir, 'inputs_for_carbon_pools/processed/fao_ecozones_bor_tem_tro/20190418/')
# Precipitation
precip_raw_dir = os.path.join(s3_base_dir, 'inputs_for_carbon_pools/raw/add_30s_precip.tif')
pattern_precip = 'precip_mm_annual'
precip_processed_dir = os.path.join(s3_base_dir, 'inputs_for_carbon_pools/processed/precip/20190418/')
# Elevation
srtm_raw_dir = os.path.join(s3_base_dir, 'inputs_for_carbon_pools/raw/elevation/')
pattern_elevation = 'elevation'
elevation_processed_dir = os.path.join(s3_base_dir, 'inputs_for_carbon_pools/processed/elevation/20190418/')
### Carbon emitted_pools
# Base directory for all carbon emitted_pools
base_carbon_pool_dir = os.path.join(s3_base_dir, 'carbon_pools/')
## Carbon emitted_pools in loss year
# Date to include in the output directory for all emissions year carbon emitted_pools
emis_pool_run_date = '20210224'
# Aboveground carbon in the year of emission for all forest types in loss pixels
pattern_AGC_emis_year = "Mg_AGC_ha_emis_year"
AGC_emis_year_dir = os.path.join(base_carbon_pool_dir, 'aboveground_carbon/loss_pixels/standard/{}/'.format(emis_pool_run_date))
# Belowground carbon in loss pixels
pattern_BGC_emis_year = 'Mg_BGC_ha_emis_year'
BGC_emis_year_dir = os.path.join(base_carbon_pool_dir, 'belowground_carbon/loss_pixels/standard/{}/'.format(emis_pool_run_date))
# Deadwood in loss pixels
pattern_deadwood_emis_year_2000 = 'Mg_deadwood_C_ha_emis_year_2000'
deadwood_emis_year_2000_dir = os.path.join(base_carbon_pool_dir, 'deadwood_carbon/loss_pixels/standard/{}/'.format(emis_pool_run_date))
# Litter in loss pixels
pattern_litter_emis_year_2000 = 'Mg_litter_C_ha_emis_year_2000'
litter_emis_year_2000_dir = os.path.join(base_carbon_pool_dir, 'litter_carbon/loss_pixels/standard/{}/'.format(emis_pool_run_date))
# Soil C in loss pixels
pattern_soil_C_emis_year_2000 = 'Mg_soil_C_ha_emis_year_2000'
soil_C_emis_year_2000_dir = os.path.join(base_carbon_pool_dir, 'soil_carbon/loss_pixels/standard/{}/'.format(emis_pool_run_date))
# All carbon emitted_pools combined in loss pixels, with emitted values
pattern_total_C_emis_year = 'Mg_total_C_ha_emis_year'
total_C_emis_year_dir = os.path.join(base_carbon_pool_dir, 'total_carbon/loss_pixels/standard/{}/'.format(emis_pool_run_date))
## Carbon emitted_pools in 2000
pool_2000_run_date = '20200826'
# Aboveground carbon for the full biomass 2000 (mangrove and non-mangrove) extent based on 2000 stocks
pattern_AGC_2000 = "Mg_AGC_ha_2000"
AGC_2000_dir = os.path.join(base_carbon_pool_dir, 'aboveground_carbon/extent_2000/standard/{}/'.format(emis_pool_run_date))
# Belowground carbon for the full biomass 2000 (mangrove and non-mangrove) extent based on 2000 stocks
pattern_BGC_2000 = "Mg_BGC_ha_2000"
BGC_2000_dir = os.path.join(base_carbon_pool_dir, 'belowground_carbon/extent_2000/standard/{}/'.format(emis_pool_run_date))
# Deadwood carbon for the full biomass 2000 (mangrove and non-mangrove) extent based on 2000 stocks
pattern_deadwood_2000 = "Mg_deadwood_C_ha_2000"
deadwood_2000_dir = os.path.join(base_carbon_pool_dir, 'deadwood_carbon/extent_2000/standard/{}/'.format(emis_pool_run_date))
# Litter carbon for the full biomass 2000 (mangrove and non-mangrove) extent based on 2000 stocks
pattern_litter_2000 = "Mg_litter_C_ha_2000"
litter_2000_dir = os.path.join(base_carbon_pool_dir, 'litter_carbon/extent_2000/standard/{}/'.format(emis_pool_run_date))
# Raw mangrove soil C
mangrove_soil_C_dir = os.path.join(s3_base_dir, 'carbon_pools/soil_carbon/raw/')
name_mangrove_soil_C = 'Mangroves_SOCS_0_100cm_30m.zip'
pattern_mangrove_soil_C_raw = 'dSOCS_0_100cm'
# Raw mineral soil C file site, SoilGrids250, updated summer 2020
pattern_mineral_soil_C_raw = 'tileSG'
mineral_soil_C_url = 'https://files.isric.org/soilgrids/latest/data/ocs/ocs_0-30cm_mean/'
# Soil C full extent but just from SoilGrids250 (mangrove soil C layer not added in)
# Not used in model.
pattern_soil_C_full_extent_2000_non_mang = 'soil_C_ha_full_extent_2000_non_mangrove_Mg_ha'
soil_C_full_extent_2000_non_mang_dir = os.path.join(base_carbon_pool_dir, 'soil_carbon/intermediate_full_extent/no_mangrove/20210414/')
# Soil C full extent (all soil pixels, with mangrove soil C in Giri mangrove extent getting priority over mineral soil C)
# Non-mangrove C is 0-30 cm, mangrove C is 0-100 cm
pattern_soil_C_full_extent_2000 = 't_soil_C_ha_full_extent_2000'
soil_C_full_extent_2000_dir = os.path.join(base_carbon_pool_dir, 'soil_carbon/intermediate_full_extent/standard/20200724/')
# Total carbon (all carbon emitted_pools combined) for the full biomass 2000 (mangrove and non-mangrove) extent based on 2000 stocks
pattern_total_C_2000 = "Mg_total_C_ha_2000"
total_C_2000_dir = os.path.join(base_carbon_pool_dir, 'total_carbon/extent_2000/standard/{}/'.format(emis_pool_run_date))
######
### Gross emissions (directory and pattern names changed in script to soil_only-- no separate variables for those)
######
### Emissions from biomass and soil (all carbon emitted_pools)
# Date to include in the output directory
emis_run_date_biomass_soil = '20210323'
# pattern_gross_emis_commod_biomass_soil = 'gross_emis_commodity_Mg_CO2e_ha_biomass_soil_2001_{}'.format(loss_years)
pattern_gross_emis_commod_biomass_soil = 'gross_emis_commodity_Mg_CO2e_ha_biomass_soil_2001_{}'.format(loss_years)
gross_emis_commod_biomass_soil_dir = '{0}gross_emissions/commodities/biomass_soil/standard/{1}/'.format(s3_base_dir, emis_run_date_biomass_soil)
pattern_gross_emis_forestry_biomass_soil = 'gross_emis_forestry_Mg_CO2e_ha_biomass_soil_2001_{}'.format(loss_years)
gross_emis_forestry_biomass_soil_dir = '{0}gross_emissions/forestry/biomass_soil/standard/{1}/'.format(s3_base_dir, emis_run_date_biomass_soil)
pattern_gross_emis_shifting_ag_biomass_soil = 'gross_emis_shifting_ag_Mg_CO2e_ha_biomass_soil_2001_{}'.format(loss_years)
gross_emis_shifting_ag_biomass_soil_dir = '{0}gross_emissions/shifting_ag/biomass_soil/standard/{1}/'.format(s3_base_dir, emis_run_date_biomass_soil)
pattern_gross_emis_urban_biomass_soil = 'gross_emis_urbanization_Mg_CO2e_ha_biomass_soil_2001_{}'.format(loss_years)
gross_emis_urban_biomass_soil_dir = '{0}gross_emissions/urbanization/biomass_soil/standard/{1}/'.format(s3_base_dir, emis_run_date_biomass_soil)
pattern_gross_emis_wildfire_biomass_soil = 'gross_emis_wildfire_Mg_CO2e_ha_biomass_soil_2001_{}'.format(loss_years)
gross_emis_wildfire_biomass_soil_dir = '{0}gross_emissions/wildfire/biomass_soil/standard/{1}/'.format(s3_base_dir, emis_run_date_biomass_soil)
pattern_gross_emis_no_driver_biomass_soil = 'gross_emis_no_driver_Mg_CO2e_ha_biomass_soil_2001_{}'.format(loss_years)
gross_emis_no_driver_biomass_soil_dir = '{0}gross_emissions/no_driver/biomass_soil/standard/{1}/'.format(s3_base_dir, emis_run_date_biomass_soil)
pattern_gross_emis_co2_only_all_drivers_biomass_soil = 'gross_emis_CO2_only_all_drivers_Mg_CO2e_ha_biomass_soil_2001_{}'.format(loss_years)
gross_emis_co2_only_all_drivers_biomass_soil_dir = '{0}gross_emissions/all_drivers/CO2_only/biomass_soil/standard/{1}/'.format(s3_base_dir, emis_run_date_biomass_soil)
pattern_gross_emis_non_co2_all_drivers_biomass_soil = 'gross_emis_non_CO2_all_drivers_Mg_CO2e_ha_biomass_soil_2001_{}'.format(loss_years)
gross_emis_non_co2_all_drivers_biomass_soil_dir = '{0}gross_emissions/all_drivers/non_CO2/biomass_soil/standard/{1}/'.format(s3_base_dir, emis_run_date_biomass_soil)
pattern_gross_emis_all_gases_all_drivers_biomass_soil = 'gross_emis_all_gases_all_drivers_Mg_CO2e_ha_biomass_soil_2001_{}'.format(loss_years)
gross_emis_all_gases_all_drivers_biomass_soil_dir = '{0}gross_emissions/all_drivers/all_gases/biomass_soil/standard/full_extent/per_hectare/{1}/'.format(s3_base_dir, emis_run_date_biomass_soil)
pattern_gross_emis_all_gases_all_drivers_biomass_soil_forest_extent = 'gross_emis_all_gases_all_drivers_Mg_CO2e_ha_biomass_soil_forest_extent_2001_{}'.format(loss_years)
gross_emis_all_gases_all_drivers_biomass_soil_forest_extent_dir = '{0}gross_emissions/all_drivers/all_gases/biomass_soil/standard/forest_extent/per_hectare/{1}/'.format(s3_base_dir, emis_run_date_biomass_soil)
pattern_gross_emis_nodes_biomass_soil = 'gross_emis_decision_tree_nodes_biomass_soil_2001_{}'.format(loss_years)
gross_emis_nodes_biomass_soil_dir = '{0}gross_emissions/decision_tree_nodes/biomass_soil/standard/{1}/'.format(s3_base_dir, emis_run_date_biomass_soil)
### Emissions from soil only
# Date to include in the output directory
emis_run_date_soil_only = '20210324'
pattern_gross_emis_commod_soil_only = 'gross_emis_commodity_Mg_CO2e_ha_soil_only_2001_{}'.format(loss_years)
gross_emis_commod_soil_only_dir = '{0}gross_emissions/commodities/soil_only/standard/{1}/'.format(s3_base_dir, emis_run_date_soil_only)
pattern_gross_emis_forestry_soil_only = 'gross_emis_forestry_Mg_CO2e_ha_soil_only_2001_{}'.format(loss_years)
gross_emis_forestry_soil_only_dir = '{0}gross_emissions/forestry/soil_only/standard/{1}/'.format(s3_base_dir, emis_run_date_soil_only)
pattern_gross_emis_shifting_ag_soil_only = 'gross_emis_shifting_ag_Mg_CO2e_ha_soil_only_2001_{}'.format(loss_years)
gross_emis_shifting_ag_soil_only_dir = '{0}gross_emissions/shifting_ag/soil_only/standard/{1}/'.format(s3_base_dir, emis_run_date_soil_only)
pattern_gross_emis_urban_soil_only = 'gross_emis_urbanization_Mg_CO2e_ha_soil_only_2001_{}'.format(loss_years)
gross_emis_urban_soil_only_dir = '{0}gross_emissions/urbanization/soil_only/standard/{1}/'.format(s3_base_dir, emis_run_date_soil_only)
pattern_gross_emis_wildfire_soil_only = 'gross_emis_wildfire_Mg_CO2e_ha_soil_only_2001_{}'.format(loss_years)
gross_emis_wildfire_soil_only_dir = '{0}gross_emissions/wildfire/soil_only/standard/{1}/'.format(s3_base_dir, emis_run_date_soil_only)
pattern_gross_emis_no_driver_soil_only = 'gross_emis_no_driver_Mg_CO2e_ha_soil_only_2001_{}'.format(loss_years)
gross_emis_no_driver_soil_only_dir = '{0}gross_emissions/no_driver/soil_only/standard/{1}/'.format(s3_base_dir, emis_run_date_soil_only)
pattern_gross_emis_all_gases_all_drivers_soil_only = 'gross_emis_all_gases_all_drivers_Mg_CO2e_ha_soil_only_2001_{}'.format(loss_years)
gross_emis_all_gases_all_drivers_soil_only_dir = '{0}gross_emissions/all_drivers/all_gases/soil_only/standard/{1}/'.format(s3_base_dir, emis_run_date_soil_only)
pattern_gross_emis_co2_only_all_drivers_soil_only = 'gross_emis_CO2_only_all_drivers_Mg_CO2e_ha_soil_only_2001_{}'.format(loss_years)
gross_emis_co2_only_all_drivers_soil_only_dir = '{0}gross_emissions/all_drivers/CO2_only/soil_only/standard/{1}/'.format(s3_base_dir, emis_run_date_soil_only)
pattern_gross_emis_non_co2_all_drivers_soil_only = 'gross_emis_non_CO2_all_drivers_Mg_CO2e_ha_soil_only_2001_{}'.format(loss_years)
gross_emis_non_co2_all_drivers_soil_only_dir = '{0}gross_emissions/all_drivers/non_CO2/soil_only/standard/{1}/'.format(s3_base_dir, emis_run_date_soil_only)
pattern_gross_emis_nodes_soil_only = 'gross_emis_decision_tree_nodes_soil_only_2001_{}'.format(loss_years)
gross_emis_nodes_soil_only_dir = '{0}gross_emissions/decision_tree_nodes/soil_only/standard/{1}/'.format(s3_base_dir, emis_run_date_soil_only)
### Net flux
######
# Net emissions for all forest types and all carbon emitted_pools in all pixels
pattern_net_flux = 'net_flux_Mg_CO2e_ha_biomass_soil_2001_{}'.format(loss_years)
net_flux_dir = os.path.join(s3_base_dir, 'net_flux_all_forest_types_all_drivers/biomass_soil/standard/full_extent/per_hectare/20210323/')
# Net emissions for all forest types and all carbon emitted_pools in forest extent
pattern_net_flux_forest_extent = 'net_flux_Mg_CO2e_ha_biomass_soil_forest_extent_2001_{}'.format(loss_years)
net_flux_forest_extent_dir = os.path.join(s3_base_dir, 'net_flux_all_forest_types_all_drivers/biomass_soil/standard/forest_extent/per_hectare/20210323/')
### Per pixel model outputs
######
# Gross removals per pixel in all pixels
pattern_cumul_gain_AGCO2_BGCO2_all_types_per_pixel_full_extent = 'gross_removals_AGCO2_BGCO2_Mg_pixel_all_forest_types_full_extent_2001_{}'.format(loss_years)
cumul_gain_AGCO2_BGCO2_all_types_per_pixel_full_extent_dir = os.path.join(s3_base_dir, 'gross_removals_AGCO2_BGCO2_all_forest_types/standard/full_extent/per_pixel/20210225/')
# Gross removals per pixel in forest extent
pattern_cumul_gain_AGCO2_BGCO2_all_types_per_pixel_forest_extent = 'gross_removals_AGCO2_BGCO2_Mg_pixel_all_forest_types_forest_extent_2001_{}'.format(loss_years)
cumul_gain_AGCO2_BGCO2_all_types_per_pixel_forest_extent_dir = os.path.join(s3_base_dir, 'gross_removals_AGCO2_BGCO2_all_forest_types/standard/forest_extent/per_pixel/20210225/')
# Gross emissions per pixel in all pixels
pattern_gross_emis_all_gases_all_drivers_biomass_soil_per_pixel_full_extent = 'gross_emis_all_gases_all_drivers_Mg_CO2e_pixel_biomass_soil_full_extent_2001_{}'.format(loss_years)
gross_emis_all_gases_all_drivers_biomass_soil_per_pixel_full_extent_dir = os.path.join(s3_base_dir, 'gross_emissions/all_drivers/all_gases/biomass_soil/standard/full_extent/per_pixel/20210323/')
# Gross emissions per pixel in forest extent
pattern_gross_emis_all_gases_all_drivers_biomass_soil_per_pixel_forest_extent = 'gross_emis_all_gases_all_drivers_Mg_CO2e_pixel_biomass_soil_forest_extent_2001_{}'.format(loss_years)
gross_emis_all_gases_all_drivers_biomass_soil_per_pixel_forest_extent_dir = os.path.join(s3_base_dir, 'gross_emissions/all_drivers/all_gases/biomass_soil/standard/forest_extent/per_pixel/20210323/')
# Net flux per pixel in all pixels
pattern_net_flux_per_pixel_full_extent = 'net_flux_Mg_CO2e_pixel_biomass_soil_full_extent_2001_{}'.format(loss_years)
net_flux_per_pixel_full_extent_dir = os.path.join(s3_base_dir, 'net_flux_all_forest_types_all_drivers/biomass_soil/standard/full_extent/per_pixel/20210323/')
# Net flux per pixel in forest extent
pattern_net_flux_per_pixel_forest_extent = 'net_flux_Mg_CO2e_pixel_biomass_soil_forest_extent_2001_{}'.format(loss_years)
net_flux_per_pixel_forest_extent_dir = os.path.join(s3_base_dir, 'net_flux_all_forest_types_all_drivers/biomass_soil/standard/forest_extent/per_pixel/20210323/')
### 4x4 km aggregation tiles for mapping
######
pattern_aggreg = '0_4deg_modelv{}'.format(version_filename)
pattern_aggreg_sensit_perc_diff = 'net_flux_0_4deg_modelv{}_perc_diff_std'.format(version_filename)
pattern_aggreg_sensit_sign_change = 'net_flux_0_4deg_modelv{}_sign_change_std'.format(version_filename)
output_aggreg_dir = os.path.join(s3_base_dir, '0_4deg_output_aggregation/biomass_soil/standard/20210323/')
### Standard deviation maps
######
# Standard deviation for annual aboveground biomass removal factors for mangroves
pattern_stdev_annual_gain_AGB_mangrove = 'annual_removal_factor_stdev_AGB_Mg_ha_mangrove'
stdev_annual_gain_AGB_mangrove_dir = os.path.join(s3_base_dir, 'stdev_annual_removal_factor_AGB_mangrove/standard/20200824/')
# Standard deviation for annual aboveground+belowground carbon removal factors for natural European forests (raw)
name_stdev_annual_gain_AGC_BGC_natrl_forest_Europe_raw = 'annual_removal_factor_stdev_AGC_BGC_t_ha_natural_forest_Europe_raw.tif'
stdev_annual_gain_AGC_BGC_natrl_forest_Europe_raw_dir = os.path.join(s3_base_dir, 'stdev_annual_removal_factor_AGC_BGC_natural_forest_Europe/raw/standard/20200722/')
# Standard deviation for annual aboveground+belowground carbon removal factors for natural European forests (processed tiles)
# https://www.efi.int/knowledge/maps/treespecies
pattern_stdev_annual_gain_AGC_BGC_natrl_forest_Europe = 'annual_gain_rate_stdev_AGC_BGC_Mg_ha_natural_forest_Europe'
stdev_annual_gain_AGC_BGC_natrl_forest_Europe_dir = os.path.join(s3_base_dir, 'stdev_annual_removal_factor_AGC_BGC_natural_forest_Europe/processed/standard/20200724/')
# Standard deviation for annual aboveground+belowground carbon removal factors for planted forests
pattern_stdev_annual_gain_AGC_BGC_planted_forest_unmasked = 'annual_gain_rate_stdev_AGC_BGC_t_ha_planted_forest_unmasked'
stdev_annual_gain_AGC_BGC_planted_forest_unmasked_dir = 's3://gfw2-data/climate/carbon_model/stdev_annual_removal_factor_AGC_BGC_planted_forest_unmasked/standard/20200801/'
# Standard deviation for annual aboveground+belowground carbon gain rate for natural US forests
pattern_stdev_annual_gain_AGC_BGC_natrl_forest_US = 'annual_removal_factor_stdev_AGC_BGC_Mg_ha_natural_forest_US'
stdev_annual_gain_AGC_BGC_natrl_forest_US_dir = os.path.join(s3_base_dir, 'stdev_annual_removal_factor_AGC_BGC_natural_forest_US/processed/standard/20200831/')
# Standard deviation for annual aboveground carbon removal factors for <20 year secondary, non-mangrove, non-planted natural forests (raw input)
name_stdev_annual_gain_AGC_natrl_forest_young_raw = 'sequestration_rate__stdev__aboveground__full_extent__Mg_C_ha_yr.tif'
stdev_annual_gain_AGC_natrl_forest_young_raw_URL = 's3://gfw2-data/climate/carbon_seqr_AI4E/Nature_publication_final_202007/full_extent/sequestration_rate__stdev__aboveground__full_extent__Mg_C_ha_yr.tif'
# Standard deviation for annual aboveground carbon removal factors for <20 year secondary, non-mangrove, non-planted natural forests
pattern_stdev_annual_gain_AGC_natrl_forest_young = 'annual_gain_rate_stdev_AGC_t_ha_natural_forest_young_secondary'
stdev_annual_gain_AGC_natrl_forest_young_dir = os.path.join(s3_base_dir, 'stdev_annual_removal_factor_AGC_natural_forest_young_secondary/processed/standard/20200728/')
# Standard deviation for annual aboveground biomass removal factors using IPCC default removal rates
pattern_stdev_annual_gain_AGB_IPCC_defaults = 'annual_removal_factor_stdev_AGB_Mg_ha_IPCC_defaults_all_ages'
stdev_annual_gain_AGB_IPCC_defaults_dir = os.path.join(s3_base_dir, 'stdev_annual_removal_factor_AGB_IPCC_defaults_all_ages/standard/20210223/')
# Standard deviation for aboveground and belowground removal factors for all forest types
pattern_stdev_annual_gain_AGC_all_types = 'annual_removal_factor_stdev_AGC_Mg_ha_all_forest_types'
stdev_annual_gain_AGC_all_types_dir = os.path.join(s3_base_dir, 'stdev_annual_removal_factor_AGC_all_forest_types/standard/20210223/')
# Raw mineral soil C file site
pattern_uncert_mineral_soil_C_raw = 'tileSG'
CI5_mineral_soil_C_url = 'https://files.isric.org/soilgrids/latest/data/ocs/ocs_0-30cm_Q0.05/'
CI95_mineral_soil_C_url = 'https://files.isric.org/soilgrids/latest/data/ocs/ocs_0-30cm_Q0.95/'
# Standard deviation in soil C stocks (0-30 cm)
pattern_stdev_soil_C_full_extent = 'Mg_soil_C_ha_stdev_full_extent_2000'
stdev_soil_C_full_extent_2000_dir = os.path.join(s3_base_dir, 'stdev_soil_carbon_full_extent/standard/20200828/')
### Sensitivity analysis
######
sensitivity_list = ['std', 'maxgain', 'no_shifting_ag', 'convert_to_grassland',
'biomass_swap', 'US_removals', 'no_primary_gain', 'legal_Amazon_loss', 'Mekong_loss']
model_type_arg_help = 'Argument for whether the model is being run in standard form or as a sensitivity analysis run. ' \
'{0} = Standard model. {1} = Maximize gain years. {2} = Shifting agriculture is treated as commodity-driven deforestation. ' \
'{3} = Commodity-driven deforestation results in grassland rather than cropland.' \
'{4} = Replace Baccini AGB map with Saatchi biomass map. ' \
'{5} = Use US-specific removals. {6} = Assume primary forests and IFLs have a removal rate of 0.' \
'{7} = Use Brazilian national loss data from PRODES for the legal Amazon.'\
'{8} = Use Hansen v2.0 loss data for the Mekong (first loss year only).'\
.format(sensitivity_list[0], sensitivity_list[1], sensitivity_list[2], sensitivity_list[3], sensitivity_list[4],
sensitivity_list[5], sensitivity_list[6], sensitivity_list[7], sensitivity_list[8])
# ## US-specific removals
#
# name_FIA_regions_raw = 'FIA_regions_dissolve_20191210.zip'
# FIA_regions_raw_dir = os.path.join(s3_base_dir, 'sensit_analysis_US_removals/FIA_region/raw/')
#
# pattern_FIA_regions_processed = 'FIA_regions_processed'
# FIA_regions_processed_dir = os.path.join(s3_base_dir, 'sensit_analysis_US_removals/FIA_region/processed/20191216/')
#
# name_US_forest_age_cat_raw = 'stand_age_category_all_US_reclass_focal_composite_set_no_data_20191218.tif'
# US_forest_age_cat_raw_dir = os.path.join(s3_base_dir, 'sensit_analysis_US_removals/forest_age_category/intermediate/')
#
# pattern_US_forest_age_cat_processed = 'US_forest_age_category_processed'
# US_forest_age_cat_processed_dir = os.path.join(s3_base_dir, 'sensit_analysis_US_removals/forest_age_category/processed/20191218/')
#
# name_FIA_forest_group_raw = 'forest_group_composite_set_no_data_20191223.tif'
# FIA_forest_group_raw_dir = os.path.join(s3_base_dir, 'sensit_analysis_US_removals/forest_group/intermediate/')
#
# pattern_FIA_forest_group_processed = 'FIA_forest_group_processed'
# FIA_forest_group_processed_dir = os.path.join(s3_base_dir, 'sensit_analysis_US_removals/forest_group/processed/20191223/')
#
# table_US_removal_rate = 'US_removal_rates_flux_model_20200623.xlsx'
# US_removal_rate_table_dir = os.path.join(s3_base_dir, 'removal_rate_tables/')
#
# # Annual aboveground biomass gain rate for non-mangrove, non-planted natural forests
# pattern_US_annual_gain_AGB_natrl_forest = 'annual_gain_rate_AGB_t_ha_natural_forest_non_mangrove_non_planted_US_removals'
# US_annual_gain_AGB_natrl_forest_dir = os.path.join(s3_base_dir, 'annual_gain_rate_AGB_natural_forest/US_removals/20200107/')
#
# # Annual belowground biomass gain rate for non-mangrove, non-planted natural forests using US-specific removal rates
# pattern_US_annual_gain_BGB_natrl_forest = 'annual_gain_rate_BGB_t_ha_natural_forest_non_mangrove_non_planted_US_removals'
# US_annual_gain_BGB_natrl_forest_dir = os.path.join(s3_base_dir, 'annual_gain_rate_BGB_natural_forest/US_removals/20200107/')
## Alternative aboveground biomass in 2000 (Sassan Saatchi/JPL 2011)
JPL_raw_name = "Saatchi_JPL_AGB_Mg_ha_1km_2000_non_integer_pixels_20200107.tif"
JPL_raw_dir = 's3://gfw2-data/climate/Saatchi_JPL_biomass/1km_2000/raw_combined/'
pattern_JPL_unmasked_processed = "Mg_aboveground_biomass_ha_2000_JPL"
JPL_processed_dir = 's3://gfw2-data/climate/Saatchi_JPL_biomass/1km_2000/processed/20200107/'
## Brazil-specific loss
Brazil_forest_extent_2000_raw_dir = os.path.join(s3_base_dir, 'sensit_analysis_legal_Amazon_loss/forest_extent_2000/raw/2020113/')
pattern_Brazil_forest_extent_2000_merged = 'legal_Amazon_forest_extent_2000_merged'
Brazil_forest_extent_2000_merged_dir = os.path.join(s3_base_dir, 'sensit_analysis_legal_Amazon_loss/forest_extent_2000/processed/combined/20200116/')
pattern_Brazil_forest_extent_2000_processed = 'legal_Amazon_forest_extent_2000'
Brazil_forest_extent_2000_processed_dir = os.path.join(s3_base_dir, 'sensit_analysis_legal_Amazon_loss/forest_extent_2000/processed/tiles/20200116/')
Brazil_annual_loss_raw_dir = os.path.join(s3_base_dir, 'sensit_analysis_legal_Amazon_loss/annual_loss/raw/20200920/')
pattern_Brazil_annual_loss_merged = 'legal_Amazon_annual_loss_2001_20{}_merged'.format(loss_years)
Brazil_annual_loss_merged_dir = os.path.join(s3_base_dir, 'sensit_analysis_legal_Amazon_loss/annual_loss/processed/combined/20200920/')
pattern_Brazil_annual_loss_processed = 'legal_Amazon_annual_loss_2001_20{}'.format(loss_years)
Brazil_annual_loss_processed_dir = os.path.join(s3_base_dir, 'sensit_analysis_legal_Amazon_loss/annual_loss/processed/tiles/20200920/')
## Mekong loss (Hansen v2.0)
Mekong_loss_raw_dir = os.path.join('s3://gfw2-data/forest_change/mekong_2_0/')
pattern_Mekong_loss_raw = 'Loss_20'
Mekong_loss_processed_dir = os.path.join(s3_base_dir, 'sensit_analysis_Mekong_loss/processed/20200210/')
pattern_Mekong_loss_processed = 'Mekong_loss_2001_15'